Some validated symbolic-numeric approximation algorithms

M. Joldes sebarre, J.-M. Muller, J.-B. Lasserre, A. F

joint works with D. Arzelier, F. Bréhard, N. Brisebarre, J.-M. Muller, J.-B. Lasserre, A. Rondepierre, B. Salvy

LAAS-CNRS, Toulouse, France

Winter Workshop on Dynamics, Topology and Computations, BEDLEWO, Poland

January 28 - February 3, 2018

Previously...

Efficient Machine Implementation of Correctly Rounded Elementary Functions

Previously...

Efficient Machine Implementation of Correctly Rounded Elementary Functions

• Numerically compute best polynomial approximation p w.r.t $||\cdot||_{\infty}$.

Previously...

Efficient Machine Implementation of Correctly Rounded Elementary Functions

- Numerically compute best polynomial approximation p w.r.t $||\cdot||_{\infty}$.
- Certify a posteriori $||f p||_{\infty} = \max_{[a,b]} |f(x) p(x)|$.

$$||f-p|| \le$$

$$||f - p|| \le \underbrace{||f - T||}_{\text{easier to compute}} + \underbrace{||T - p||}_{\text{reduced dependency}}$$

f replaced with

- polynomial approximation T (of higher degree, but easier to compute & certify)

$$||f - p|| \le \underbrace{||f - T||}_{\text{easier to compute}} + \underbrace{||T - p||}_{\text{reduced dependency}}$$

- f replaced with
- polynomial approximation T (of higher degree, but easier to compute & certify)
- interval Δ s. t. $f(x) T(x) \in \Delta, \forall x \in [a, b]$

$$||f - p|| \le \underbrace{||f - T||}_{\text{easier to compute}} + \underbrace{||T - p||}_{\text{reduced dependency}}$$

- f replaced with a rigorous polynomial approximation : (T, Δ)
- polynomial approximation T (of higher degree, but easier to compute & certify)
- interval Δ s. t. $f(x) T(x) \in \Delta, \forall x \in [a, b]$

- Consider "sufficiently smooth" univariate functions ${\it f}$ over [a,b].
- f replaced with a rigorous polynomial approximation : (T, Δ)
- (1). RPAs based on Taylor series
 → Taylor Models (TMs).
- (2). Near-best RPAs: based on Chebyshev Series
 - f is an elementary function, e.g. $\exp(1/\cos(x))$
 - f is solution of a linear ordinary differential equation (with appropriate initial conditions).
- (3). Other orthogonal polynomials...

- Consider "sufficiently smooth" univariate functions ${\it f}$ over [a,b].
- f replaced with a rigorous polynomial approximation : (T, Δ)
- (1). RPAs based on Taylor series → Taylor Models (TMs).
- (2). Near-best RPAs: based on Chebyshev Series

 → Chebyshev Models (CMs).
 - f is an elementary function, e.g. $\exp(1/\cos(x))$;
 - **f** is solution of a linear ordinary differential equation (with appropriate initial conditions).
- (3). Other orthogonal polynomials...

- Consider "sufficiently smooth" univariate functions \boldsymbol{f} over [a,b].
- -f replaced with a rigorous polynomial approximation : (T, Δ)
- (2). Near-best RPAs: based on Chebyshev Series

 → Chebyshev Models (CMs).
 - f is an elementary function, e.g. $\exp(1/\cos(x))$;
 - **f** is solution of a linear ordinary differential equation (with appropriate initial conditions).
- (3). Other orthogonal polynomials...

- Consider "sufficiently smooth" univariate functions f over [a,b].
- f replaced with a rigorous polynomial approximation : (T, Δ)
- (1). RPAs based on Taylor series → Taylor Models (TMs).
- (2). Near-best RPAs: based on Chebyshev Series

 → Chebyshev Models (CMs).
 - f is an elementary function, e.g. $\exp(1/\cos(x))$;
 - *f* is solution of a linear ordinary differential equation (with appropriate initial conditions).
- (3). Other orthogonal polynomials...

$$T_n(cos(\theta)) = cos(n\theta)$$

$$x_k = \cos\left(\frac{(k+1/2)\pi}{n}\right), k = 0, \dots, n-1.$$

$$T_n(cos(\theta)) = cos(n\theta)$$

$$T_{i+1} = 2xT_i - T_{i-1}, T_0(x) = 1, T_1(x) = x$$

$$x_k = \cos\left(\frac{(k+1/2)\pi}{n}\right), k = 0, \dots, n-1.$$

$$T_n(cos(\theta)) = cos(n\theta)$$

$$T_{i+1} = 2xT_i - T_{i-1}, T_0(x) = 1, T_1(x) = x$$

Orthogonality:

$$\int_{-1}^{1} \frac{T_i(x)T_j(x)}{\sqrt{1-x^2}} dx = \begin{cases} 0 & \text{if } i \neq j \\ \pi & \text{if } i = 0 \\ \frac{\pi}{2} & \text{otherwise} \end{cases}$$

$$x_k = \cos\left(\frac{(k+1/2)\pi}{n}\right), k = 0, \dots, n-1.$$

$$T_n(\cos(\theta)) = \cos(n\theta)$$

$$T_{i+1} = 2xT_i - T_{i-1}, T_0(x) = 1, T_1(x) = x$$

Orthogonality:

$$\int_{-1}^{1} \frac{T_i(x)T_j(x)}{\sqrt{1-x^2}} dx = \begin{cases} 0 & \text{if } i \neq j \\ \pi & \text{if } i = 0 \\ \frac{\pi}{2} & \text{otherwise} \end{cases}$$

$$\sum_{k=0}^{n-1} T_i(x_k) T_j(x_k) = \begin{cases} 0 & \text{if } i \neq j \\ n & \text{if } i = 0 \\ \frac{n}{2} & \text{otherwise} \end{cases}$$

$$x_k = \cos\left(\frac{(k+1/2)\pi}{n}\right), k = 0, \dots, n-1.$$

Two approximations of f:

by Taylor series

$$f = \sum_{n=0}^{+\infty} c_n x^n, \ c_n = \frac{f^{(n)}(0)}{n!},$$

or by Chebyshev series

$$f = \sum_{n = -\infty}^{+\infty} t_n T_n(x),$$

$$t_n = \frac{1}{\pi} \int_{-1}^{1} T_n(t) \frac{f(t)}{\sqrt{1-t^2}} dt.$$

Chebyshev Series vs Taylor Series II

Chebyshev Series vs Taylor Series III

Convergence Domains :

For Taylor series: disc centered at $x_0=0$ which avoids all the singularities of f

For Chebyshev series: elliptic disc with foci at ± 1 which avoids all the singularities of f

Chebyshev Series vs Taylor Series III

Convergence Domains :

For Taylor series: disc centered at $x_0=0$ which avoids all the singularities of f

For Chebyshev series: elliptic disc with foci at ± 1 which avoids all the singularities of f

ullet Taylor series can not converge over entire [-1,1] unless all singularities lie outside the unit circle.

Chebyshev Series vs Taylor Series III

Convergence Domains :

For Taylor series: disc centered at $x_0=0$ which avoids all the singularities of f

For Chebyshev series: elliptic disc with foci at ± 1 which avoids all the singularities of f

- ullet Taylor series can not converge over entire [-1,1] unless all singularities lie outside the unit circle.
- \checkmark Chebyshev series converge over entire [-1,1] as soon as there are no real singularities in [-1,1].

Chebyshev Series vs Taylor Series IV

Truncation Error:

Taylor series, Lagrange formula:

$$\forall x \in [-1, 1], \ \exists \xi \in [-1, 1] \ \text{s.t.}$$
$$f(x) - T(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

Chebyshev Series vs Taylor Series IV

Truncation Error:

Taylor series, Lagrange formula:

$$\forall x \in [-1,1], \ \exists \xi \in [-1,1] \ \text{s.t.}$$

$$f(x) - T(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

Chebyshev series, Bernstein-like formula:

$$\forall x \in [-1,1], \ \exists \xi \in [-1,1] \ \text{ s.t.}$$

$$f(x) - P(x) = \frac{f^{(n+1)}(\xi)}{2^n(n+1)!}.$$

Chebyshev Series vs Taylor Series IV

Truncation Error:

Taylor series, Lagrange formula:

$$\forall x \in [-1,1], \ \exists \xi \in [-1,1] \ \text{ s.t.}$$

$$f(x) - T(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

Chebyshev series, Bernstein-like formula:

 $\forall x \in [-1, 1], \ \exists \xi \in [-1, 1] \ \text{s.t.}$

$$f(x) - P(x) = \frac{f^{(n+1)}(\xi)}{2^n(n+1)!}.$$

 $[\checkmark]$ We should have an improvement of 2^n in the width of the Chebyshev truncation error.

Quality of approximation of truncated Chebyshev series compared to best polynomial approximation $% \left(1\right) =\left(1\right) \left(1\right$

It is well-known that truncated Chebyshev series $\pi_d(f)$ are *near-best* uniform approximations [Chap 5.5, Mason & Handscomb 2003].

Quality of approximation of truncated Chebyshev series compared to best polynomial approximation

It is well-known that truncated Chebyshev series $\pi_d(f)$ are near-best uniform approximations [Chap 5.5, Mason & Handscomb 2003].

Let p_d^* is the polynomial of degree at most d that minimizes $\|f-p\|_\infty = \sup_{-1 \le x \le 1} |f(x)-p(x)|.$

Quality of approximation of truncated Chebyshev series compared to best polynomial approximation

It is well-known that truncated Chebyshev series $\pi_d(f)$ are *near-best* uniform approximations [Chap 5.5, Mason & Handscomb 2003].

Let p_d^* is the polynomial of degree at most d that minimizes $\|f-p\|_{\infty}=\sup_{-1< x<1}|f(x)-p(x)|.$

$$||f - \pi_d(f)||_{\infty} \leqslant \underbrace{\left(\frac{4}{\pi^2} \log d + O(1)\right)}_{\Lambda_d} ||f - p_d^*||_{\infty}$$

Quality of approximation of truncated Chebyshev series compared to best polynomial approximation

It is well-known that truncated Chebyshev series $\pi_d(f)$ are *near-best* uniform approximations [Chap 5.5, Mason & Handscomb 2003].

Let p_d^* is the polynomial of degree at most d that minimizes $\|f-p\|_\infty=\sup_{-1\leq x\leq 1}|f(x)-p(x)|.$

$$||f - \pi_d(f)||_{\infty} \leqslant \underbrace{\left(\frac{4}{\pi^2} \log d + O(1)\right)}_{\Lambda_d} ||f - p_d^*||_{\infty}$$

- $\Lambda_{10}=2.22...
 ightarrow$ we lose at most 2 bits
- $\Lambda_{30} = 2.65... \rightarrow$ we lose at most 2 bits
- $\Lambda_{100}=3.13...
 ightarrow$ we lose at most 3 bits
- $\Lambda_{500}=3.78...
 ightarrow$ we lose at most 3 bits

Chebyshev truncations are near-best: Example

Chebyshev truncation of degree 4

Best approximant of degree 4

Chebyshev Series vs Taylor Series (9gag version)

Computing Rigorous Polynomial Approximations

Chebyshev series of
$$f = \sum_{i=-\infty}^{+\infty} t_i T_i(x)$$
 :

TWO STEPS:

- 1. Obtain numerical approximation for coefficients of truncated Chebyshev series
 - Discrete orthogonality $\leadsto \widetilde{t}_i = \sum\limits_{k=0}^n \frac{1}{n+1} \frac{1}{f(x_k)} T_i(x_k)$

when f is elementary, evaluating f at Chebyshev nodes is easy

2. A posteriori validation of the solution with Banach Fixed Point Theorem (Newton-like Operator)

Computing Rigorous Polynomial Approximations

Chebyshev series of
$$f = \sum_{i=-\infty}^{+\infty} t_i T_i(x)$$
 :

TWO STEPS:

- 1. Obtain numerical approximation for coefficients of truncated Chebyshev series
 - Discrete orthogonality $\leadsto \widetilde{t}_i = \sum\limits_{k=0}^n \frac{1}{n+1} \frac{1}{f(x_k)} T_i(x_k)$

when f is elementary, evaluating f at Chebyshev nodes is easy

- When f is given by LODE: TODAY's Topic
- 2. A posteriori validation of the solution with Banach Fixed Point Theorem (Newton-like Operator)

Some Background in LODEs

• Infinite-dimensional linear problem:

$$\mathbf{L} = \partial^r + a_{r-1}\partial^{r-1} + \dots + a_1\partial + a_0 \qquad : \mathcal{C}^r(I) \to \mathcal{C}^0(I),$$

$$\mathbf{B}_{t_0} : f \mapsto \left(f(t_0), f'(t_0), \dots, f^{(r-1)}(t_0) \right) \qquad : \mathcal{C}^r(I) \to \mathbb{R}^r.$$

• Existence and Uniqueness of the Solution

Theorem 1 (Picard-Lindelöf – linear case)

The linear operator:

$$(\mathbf{L}, \mathbf{B}_{t_0}) : \mathcal{C}^r(I) \to \mathcal{C}^0(I) \times \mathbb{R}^r,$$

is a (bicontinuous) isomorphism,

Some Background in LODEs

• Infinite-dimensional linear problem:

$$\mathbf{L} = \partial^r + a_{r-1}\partial^{r-1} + \dots + a_1\partial + a_0 \qquad : \mathcal{C}^r(I) \to \mathcal{C}^0(I),$$

$$\mathbf{B}_{t_0} : f \mapsto \left(f(t_0), f'(t_0), \dots, f^{(r-1)}(t_0) \right) \qquad : \mathcal{C}^r(I) \to \mathbb{R}^r.$$

• Existence and Uniqueness of the Solution

Theorem 1 (Picard-Lindelöf – linear case)

The linear operator:

$$(\mathbf{L}, \mathbf{B}_{t_0}) : \mathcal{C}^r(I) \to \mathcal{C}^0(I) \times \mathbb{R}^r,$$

is a (bicontinuous) isomorphism, which means that:

- ullet The solutions of the linear differential equation form a r-dimensional affine space.
- ullet For fixed initial conditions at t_0 , there is one and only one solution.

Def.

A function $y: \mathbb{R} \to \mathbb{R}$ is D-finite if it is solution of a (homogeneous) linear differential equation with polynomial coefficients:

$$L \cdot y = a_r y^{(r)} + a_{r-1} y^{(r-1)} + \dots + a_0 y = 0, \quad a_i \in \mathbb{R}[x].$$

Def.

A function $y:\mathbb{R}\to\mathbb{R}$ is D-finite if it is solution of a (homogeneous) linear differential equation with polynomial coefficients:

$$L \cdot y = a_r y^{(r)} + a_{r-1} y^{(r-1)} + \dots + a_0 y = 0, \quad a_i \in \mathbb{R}[x].$$

$$f(x) = \exp(x) \quad \leftrightarrow \quad \{f' - f = 0, f(0) = 1\}.$$

Def.

A function $y:\mathbb{R}\to\mathbb{R}$ is D-finite if it is solution of a (homogeneous) linear differential equation with polynomial coefficients:

$$L \cdot y = a_r y^{(r)} + a_{r-1} y^{(r-1)} + \dots + a_0 y = 0, \quad a_i \in \mathbb{R}[x].$$

$$f(x) = \exp(x) \leftrightarrow \{f' - f = 0, f(0) = 1\}.$$
 cos, arccos, Airy functions, Bessel functions, ...

Def.

A function $y:\mathbb{R}\to\mathbb{R}$ is D-finite if it is solution of a (homogeneous) linear differential equation with polynomial coefficients:

$$L \cdot y = a_r y^{(r)} + a_{r-1} y^{(r-1)} + \dots + a_0 y = 0, \quad a_i \in \mathbb{R}[x].$$

Examples 2

 $f(x) = \exp(x) \leftrightarrow \{f' - f = 0, f(0) = 1\}.$ cos, arccos, Airy functions, Bessel functions, ... About 60% of Abramowitz & Stegun

Def.

A function $y:\mathbb{R}\to\mathbb{R}$ is D-finite if it is solution of a (homogeneous) linear differential equation with polynomial coefficients:

$$L \cdot y = a_r y^{(r)} + a_{r-1} y^{(r-1)} + \dots + a_0 y = 0, \quad a_i \in \mathbb{R}[x].$$

The power of symbolic computation

Differential equation + initial conditions = Data Structure

Examples 2

$$f(x) = \exp(x) \leftrightarrow \{f' - f = 0, f(0) = 1\}.$$
 cos, arccos, Airy functions, Bessel functions, ... About 60% of Abramowitz & Stegun

Fast algorithms for evaluation; Automatic proofs of identities

Def.

A function $y:\mathbb{R}\to\mathbb{R}$ is D-finite if it is solution of a (homogeneous) linear differential equation with polynomial coefficients:

$$L \cdot y = a_r y^{(r)} + a_{r-1} y^{(r-1)} + \dots + a_0 y = 0, \quad a_i \in \mathbb{R}[x].$$
 (1)

Def.

A function $y:\mathbb{R}\to\mathbb{R}$ is D-finite if it is solution of a (homogeneous) linear differential equation with polynomial coefficients:

$$L \cdot y = a_r y^{(r)} + a_{r-1} y^{(r-1)} + \dots + a_0 y = 0, \quad a_i \in \mathbb{R}[x].$$
 (1)

A sequence $\left(y_{n}\right)$ is P-recursive when it satisfies a recurrence relation of the form:

$$q_0(n)y_{n+l} + \dots + q_{\ell}(n)y_n = 0, \quad n \ge 0,$$

with polynomial coefficients q_0, \ldots, q_ℓ .

Def.

A function $y:\mathbb{R}\to\mathbb{R}$ is D-finite if it is solution of a (homogeneous) linear differential equation with polynomial coefficients:

$$L \cdot y = a_r y^{(r)} + a_{r-1} y^{(r-1)} + \dots + a_0 y = 0, \quad a_i \in \mathbb{R}[x].$$
 (1)

A sequence (y_n) is P-recursive when it satisfies a recurrence relation of the form:

$$q_0(n)y_{n+l} + \dots + q_{\ell}(n)y_n = 0, \quad n \ge 0,$$

with polynomial coefficients q_0, \ldots, q_ℓ .

Theorem

 $\sum y_n x^n$ is solution of a linear differential equation with polynomial coefficients iff the sequence y_n is P-recursive.

Proof.

$$y(x) \leftrightarrow y_n$$

$$\alpha y(x) \quad \alpha y_n$$

$$xy(x) \quad y_{n-1}$$

$$xy'(x) \quad ny_n$$

e.g.

$$y' = y \leftrightarrow (n+1)y_{n+1} = y_n$$

Closure

- Stable under operations: sum, product, Hadamard product, Laplace/Borel transform.
- y algebraic (exists a non-zero polynomial P s.t. P(x,y)=0), f D-finite $\Rightarrow y, \ f\circ y$ D-finite

Some examples with gfun*

$\lambda \exp(x^k/k)$

$$y' = x^{k-1}y \leftrightarrow (n+1)y_{n+1} = y_{n-k+1}$$

diffeq order =1; rec. order $=k \leadsto$ initial values determine the good subspace of solutions

^{*}B. Salvy and P. Zimmermann. — Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable. — ACM transactions on mathematical software, 1994.

Closure

- Stable under operations: sum, product, Hadamard product, Laplace/Borel transform.
- y algebraic (exists a non-zero polynomial P s.t. P(x,y)=0), f D-finite $\Rightarrow y, f \circ y$ D-finite

Some examples with gfun*

$\lambda \exp(x^k/k)$

$$y' = x^{k-1}y \leftrightarrow (n+1)y_{n+1} = y_{n-k+1}$$

diffeq order =1; rec. order $=k \leadsto$ initial values determine the good subspace of solutions

Compute the coefficient of x^{1000} .

$$p(x) = (1+x)^{1000}(1+x+x^2)^{500}$$

$$\frac{p'(x)}{p(x)} = \frac{1000}{1+x} + 500 \frac{2x+1}{1+x+x^2}$$

^{*}B. Salvy and P. Zimmermann. — Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable. — ACM transactions on mathematical software, 1994.

$$\arcsin(x)^2 = \sum_{k \ge 0} \frac{k!}{\left(\frac{1}{2}\right) \dots \left(k + \frac{1}{2}\right)} \frac{x^{2k+2}}{2k+2}$$

• LODE for $\arcsin(x)$: $(1-x^2)y'' - xy' = 0$, y(0) = 0, y'(0) = 1

$$\arcsin(x)^{2} = \sum_{k \ge 0} \frac{k!}{\left(\frac{1}{2}\right) \dots \left(k + \frac{1}{2}\right)} \frac{x^{2k+2}}{2k+2}$$

- LODE for $\arcsin(x)$: $(1-x^2)y'' xy' = 0$, y(0) = 0, y'(0) = 1
- Let $h = y^2$:

$$\begin{split} h' &= 2yy' \\ h'' &= 2y'^2 + 2yy'' = 2y'^2 + \frac{2x}{1 - x^2}yy' \\ h''' &= 4y'y'' + \frac{2x}{1 - x^2}(y'^2 + yy'') + \left(\frac{2}{1 - x^2} + \frac{4x^2}{(1 - x^2)^2}\right)yy' \\ &= \left(\frac{2}{1 - x^2} + \frac{6x^2}{(1 - x^2)^2}\right)yy' + \frac{6x}{1 - x^2}y'^2 \end{split}$$

$$\arcsin(x)^{2} = \sum_{k \ge 0} \frac{k!}{\left(\frac{1}{2}\right) \dots \left(k + \frac{1}{2}\right)} \frac{x^{2k+2}}{2k+2}$$

- LODE for $\arcsin(x)$: $(1-x^2)y'' xy' = 0$, y(0) = 0, y'(0) = 1
- Let $h = y^2$:

$$\begin{split} h' &= 2yy' \\ h'' &= 2y'^2 + 2yy'' = 2y'^2 + \frac{2x}{1 - x^2}yy' \\ h''' &= 4y'y'' + \frac{2x}{1 - x^2}(y'^2 + yy'') + \left(\frac{2}{1 - x^2} + \frac{4x^2}{(1 - x^2)^2}\right)yy' \\ &= \left(\frac{2}{1 - x^2} + \frac{6x^2}{(1 - x^2)^2}\right)yy' + \frac{6x}{1 - x^2}y'^2 \end{split}$$

ullet Vectors h,h',h'',h''' linear combination of 3 vectors y^2,yy',y'^2 . Compute linear relation

$$(1 - x^2)h''' - 3xh'' - h' = 0$$

$$\arcsin(x)^{2} = \sum_{k>0} \frac{k!}{\left(\frac{1}{2}\right)\dots\left(k+\frac{1}{2}\right)} \frac{x^{2k+2}}{2k+2}$$

- LODE for $\arcsin(x)$: $(1-x^2)y'' xy' = 0$, y(0) = 0, y'(0) = 1
- Let $h = y^2$:

$$\begin{split} h' &= 2yy' \\ h'' &= 2y'^2 + 2yy'' = 2y'^2 + \frac{2x}{1 - x^2}yy' \\ h''' &= 4y'y'' + \frac{2x}{1 - x^2}(y'^2 + yy'') + \left(\frac{2}{1 - x^2} + \frac{4x^2}{(1 - x^2)^2}\right)yy' \\ &= \left(\frac{2}{1 - x^2} + \frac{6x^2}{(1 - x^2)^2}\right)yy' + \frac{6x}{1 - x^2}y'^2 \end{split}$$

ullet Vectors h,h',h'',h''' linear combination of 3 vectors y^2,yy',y'^2 . Compute linear relation

$$(1 - x^2)h''' - 3xh'' - h' = 0$$

• Linear rec $(n+1)(n+2)(n+3)h_{n+3} - (n+1)^3h_{n+1} = 0$ easy to check (or to solve in this case) don't forget i.c. h(0) = 0, h'(0) = 0, h''(0) = 2.

Many efficient symbolic algorithms:

- many special functions and combinatoric identities
- fast evaluation in arbitrary precision (analytic continuation)
- fast evaluation of P-recursive sequences.
- Software: algolib* (gfun, mgfun, numgfun) in Maple or HolonomicFunctions (C. Koutschan) in Mathematica
- Application: Web dictionary of special functions http://ddmf.msr-inria.inria.fr

Note: Examples in the previous slides thanks to B. Salvy's talks.

 $^{{\}rm *http://algo.inria.fr/libraries/:\ B.\ Salvy,\ M.\ Mezzarobba,\ F.\ Chyzak,\ A.\ Bostan}$

Uniform Approximation of D-finite Functions

Problem

Given an integer d and a LODE (with polynomial coefficients) and suitable boundary conditions, find

the Chebyshev basis coefficients of a polynomial $p(x)=\sum_{0\leq k\leq d}c_kT_k$ and a "small" bound B such that

$$|p(x) - f(x)| < B$$
 for all x in $[-1, 1]$,

where f is the exact solution of the given LODE.

Related Works

Computation of the Chebyshev coefficients for D-finite functions

- Using a relation between coefficients Clenshaw (1957)
- Using the recurrence relation between the coefficients Fox-Parker (1968)
- The tau method of Lanczos (1938), Ortiz (1969-1993)

Today, the computer algebra way and the numerical analyst way (and their interaction)

Theorem [60's, BenoitJoldesMezzarobba11]

 $\sum u_n T_n(x)$ is solution of a linear differential equation with polynomial coefficients iff the sequence u_n is cancelled by a linear recurrence with polynomial coefficients.

Theorem [60's, BenoitJoldesMezzarobba11]

 $\sum u_n T_n(x)$ is solution of a linear differential equation with polynomial coefficients iff the sequence u_n is cancelled by a linear recurrence with polynomial coefficients.

 ${\sf Recurrence\ relation+good\ initial\ conditions} \Rightarrow {\sf Fast\ numerical\ computation\ of\ the\ coefficients}$

```
Taylor: \exp = \sum \frac{1}{n!} x^n
Rec: u(n+1) = \frac{u(n)}{n+1}
u(0) = 1 \qquad 1/0! = 1
u(1) = 1 \qquad 1/1! = 1
u(2) = 0, 5 \qquad 1/2! = 0, 5
\vdots \qquad \vdots
u(50) \approx 3, 28.10^{-65} \qquad 1/50! \approx 3, 28.10^{-65}
```

Theorem [60's, BenoitJoldesMezzarobba11]

 $\sum u_n T_n(x)$ is solution of a linear differential equation with polynomial coefficients iff the sequence u_n is cancelled by a linear recurrence with polynomial coefficients.

Recurrence relation + good initial conditions \Rightarrow Fast numerical computation of the coefficients

Taylor: $\exp = \sum \frac{1}{n!} x^n$ Rec: $u(n+1) = \frac{u(n)}{n+1}$	
u(0) = 1 u(1) = 1 u(2) = 0, 5	1/0! = 1 1/1! = 1 1/2! = 0, 5
$\vdots u(50) \approx 3,28.10^{-65}$	$\vdots \\ 1/50! \approx 3,28.10^{-65}$

```
\begin{array}{lll} \text{Chebyshev: } \exp = \sum I_n(1) T_n(x) \\ \text{Rec: } u(n+1) = -2nu(n) + u(n-1) \\ \\ u(0) = 1,266 & I_0(1) \approx 1,266 \\ u(1) = 0,565 & I_1(1) \approx 0,565 \\ u(2) \approx 0,136 & I_2(1) \approx 0,136 \\ \\ & \vdots & & \vdots & \vdots \\ \end{array}
```

Theorem [60's, BenoitJoldesMezzarobba11]

 $\sum u_n T_n(x)$ is solution of a linear differential equation with polynomial coefficients iff the sequence u_n is cancelled by a linear recurrence with polynomial coefficients.

Recurrence relation + good initial conditions \Rightarrow Fast numerical computation of the coefficients

Taylor: $\exp = \sum \frac{1}{n!} x^n$ Rec: $u(n+1) = \frac{u(n)}{n+1}$	
u(0) = 1	1/0! = 1
u(1) = 1	1/1! = 1
u(2) = 0, 5	1/2! = 0, 5
:	:
$u(50) \approx 3,28.10^{-65}$	$1/50! \approx 3,28.10^{-65}$

```
Chebyshev: \exp = \sum I_n(1)T_n(x)

Rec: u(n+1) = -2nu(n) + u(n-1)

u(0) = 1,266 I_0(1) \approx 1,266

u(1) = 0,565 I_1(1) \approx 0,565

u(2) \approx 0,136 I_2(1) \approx 0,136

\vdots \vdots

u(50) \approx 4,450.10^{67} I_{50}(1) \approx 2,934.10^{-80}
```

Convergent and Divergent Solutions of the Recurrence

Study of the Chebyshev recurrence

If u(n) is solution, then there exists another solution $v(n) \sim \frac{1}{u(n)}$

Newton polygon of a Chebyshev recurrence

Convergent and Divergent Solutions of the Recurrence

Study of the Chebyshev recurrence

If u(n) is solution, then there exists another solution $v(n) \sim \frac{1}{u(n)}$

Newton polygon of a Chebyshev recurrence

For the recurrence u(n+1) + 2nu(n) - u(n-1)

Two independent solutions are $I_n(1) \sim \frac{1}{(2n)!}$ and $K_n(1) \sim (2n)!$

Convergent and Divergent Solutions of the Recurrence

Study of the Chebyshev recurrence

If u(n) is solution, then there exists another solution $v(n) \sim \frac{1}{u(n)}$

Newton polygon of a Chebyshev recurrence

For the recurrence u(n+1) + 2nu(n) - u(n-1)

Two independent solutions are $I_n(1) \sim \frac{1}{(2n)!}$ and $K_n(1) \sim (2n)!$

Miller's algorithm

To compute the first N coefficients of the most convergent solution of a recurrence relation of order 2

- \bullet Initialize u(N)=0 and u(N-1)=1 and compute the first coefficients using the recurrence backwards
- ullet Normalize u with the initial condition of the recurrence

Example 3

$$y(x) = e^x = \sum_{n=-\infty}^{\infty} c_n T_n(x)$$

$$c_{n+1} + 2n \, c_n - c_{n-1} = 0$$

 c_0 c_1 c_2 \vdots c_{50}

 c_{51}

 c_{52}

Example 3

$$y(x) = e^x = \sum_{n=-\infty}^{\infty} c_n T_n(x)$$

$$c_{n+1} + 2n \, c_n - c_{n-1} = 0$$

 $c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_{50}$

 c_{51}

 c_{52}

Example 3

$$y(x) = e^x = \sum_{n=-\infty}^{\infty} c_n T_n(x)$$

$$c_{n+1} + 2n \, c_n - c_{n-1} = 0$$

 $\begin{array}{c} u_0 \\ u_1 \\ u_2 \\ \vdots \\ u_{50} \approx \quad 1,02 \cdot 10^2 \\ u_{51} = \quad 1 \\ u_{52} = \quad 0 \end{array}$

 c_1 c_2

 c_0

$$y(x) = e^x = \sum_{n=-\infty}^{\infty} c_n T_n(x)$$

$$c_{n+1} + 2n \, c_n - c_{n-1} = 0$$

u_0	c_0
u_1	c_1
$u_2 \approx -4,72 \cdot 10^{80}$	c_2
:	:
•	•
$u_{50} \approx 1,02 \cdot 10^2$	c_{50}
$u_{51} = 1$	c_{51}
$u_{52} = 0$	c_{52}

$$y(x) = e^x = \sum_{n=-\infty}^{\infty} c_n T_n(x)$$

$$c_{n+1} + 2n \, c_n - c_{n-1} = 0$$

u_0	c_0
$u_1 \approx 1,96 \cdot 10^{81}$	c_1
$u_2 \approx -4,72 \cdot 10^{80}$	c_2
:	:
:	
$u_{50} \approx 1,02 \cdot 10^2$	c_{50}
$u_{51} = 1$	c_{51}
$u_{52} = 0$	c_{52}

$$y(x) = e^x = \sum_{n=-\infty}^{\infty} c_n T_n(x)$$

$$c_{n+1} + 2n c_n - c_{n-1} = 0$$

$u_0 \approx -4,40 \cdot 10^{81}$	c_0
$u_1 \approx 1,96 \cdot 10^{81}$	c_1
$u_2 \approx -4,72 \cdot 10^{80}$	c_2
:	:
:	-
$u_{50} \approx 1,02 \cdot 10^2$	c_{50}
$u_{51} = 1$	c_{51}
$u_{52} = 0$	c_{52}

Example 3

$$y(x) = e^x = \sum_{n=-\infty}^{\infty} c_n T_n(x)$$

$$c_{n+1} + 2n \, c_n - c_{n-1} = 0$$

$$\begin{array}{lll} u_0 & \approx -4, 40 \cdot 10^{81} \\ u_1 & \approx & 1, 96 \cdot 10^{81} \\ u_2 & \approx -4, 72 \cdot 10^{80} \\ & \vdots \\ u_{50} & \approx & 1, 02 \cdot 10^2 \\ u_{51} & = & 1 \\ u_{52} & = & 0 \end{array}$$

$$c_1$$
 c_2
 \vdots
 c_{50}
 c_{51}
 c_{52}

 c_0

$$S = \sum_{n=-50}^{50} u_n T_n(0) \approx -3,48 \cdot 10^{81}$$

$$y(x) = e^x = \sum_{n=-\infty}^{\infty} c_n T_n(x)$$
 $c_{n+1} + 2n c_n - c_{n-1} = 0$

$$S = \sum_{n=-50}^{50} u_n T_n(0) \approx -3,48 \cdot 10^{81}$$

Algorithm for Computing the Coefficients

Input: a differential equation of order r with boundary conditions Output: a polynomial approximation of degree N of the solution

- ullet compute the Chebyshev recurrence of order $2s \geq 2r$
- ullet for i from 1 to s
 - using the recurrence relation backwards, compute the first N coefficients of the sequence $u^{[i]}$ starting with the initial conditions

$$\left(u^{[i]}(N+2s),\cdots,u^{[i]}(N+i),\cdots,u^{[i]}(N+1)\right)=(0,\cdots,1,\cdots,0)$$

 \bullet combine the s sequences $u^{[i]}$ according to the r boundary conditions and the s-r symmetry relations

Algorithm for Computing the Coefficients

Input: a differential equation of order r with boundary conditions Output: a polynomial approximation of degree N of the solution

- \bullet compute the Chebyshev recurrence of order $2s \geq 2r$
- ullet for i from 1 to s
 - using the recurrence relation backwards, compute the first N coefficients of the sequence $u^{[i]}$ starting with the initial conditions

$$\left(u^{[i]}(N+2s), \cdots, u^{[i]}(N+i), \cdots, u^{[i]}(N+1)\right) = (0, \cdots, 1, \cdots, 0)$$

 \bullet combine the s sequences $u^{[i]}$ according to the r boundary conditions and the s-r symmetry relations

Theorem

This algorithm runs in O(N) arithmetic operations

Quality of polynomial approximations

Computing the coefficients: The numerical analyst way

Boils down to efficiently solving a structured linear system*

$$a_r(x)y^{(r)}(x) + a_{r-1}(x)y^{(r-1)}(x) + \dots + a_0(x)y(x) = 0$$
 and initial conditions

Equivalent to
$$\left(\mathbf{I}+\mathbf{K}\right)\cdot \varphi=\psi$$
 where $\varphi=y^{(r)}:=\sum_{k\geq 0}c_kT_k$

 $\mathbf{K} \cdot \sum_{k \ge 0} c_k T_k \simeq$

K is almost-banded

and compact.

^{*}Olver and Townsend Algorithm revisited

Computing the coefficients: The numerical analyst way

Boils down to efficiently solving a structured linear system*

$$a_r(x)y^{(r)}(x)+a_{r-1}(x)y^{(r-1)}(x)+\cdots+a_0(x)y(x)=0 \text{ and initial conditions}$$
 Equivalent to $\left(\mathbf{I}+\mathbf{K}^{[\mathbf{N}]}\right)\cdot\varphi=\psi$ where $\varphi=y^{(r)}:=\sum_{k\geq 0}c_kT_k$

truncated integral operator $\mathbf{K}^{[N]}$.

 $\mathbf{K}^{[N]} \cdot \sum c_k T_k \simeq$

^{*}Olver and Townsend Algorithm revisited

Validated and numerically efficient Chebyshev Series Approximations for LODEs*

An example:

Linearized Equation of the In-Plane Motion

$$z''(t) + \left(4 - \frac{3}{1 + e\cos t}\right)z(t) = c$$

- Approximate solutions via Chebyshev series
- Validate approximate solutions with certified error bounds.

^{*} Many thanks to D. Arzelier, F. Bréhard, N. Brisebarre. Related articles BréhardBrisebarreJ18. ArantesBréhardGazzino18

• We want to solve
$$z''(t)+\left(4-\frac{3}{1+0.5\cos t}\right)z(t)=c$$
 with $z(-1)=0$, $z'(-1)=1$ and $c=1$.

• We want to solve $z''(t)+\left(4-\frac{3}{1+0.5\cos t}\right)z(t)=c$ with z(-1)=0, z'(-1)=1 and c=1.

Equivalent to $\left(\mathbf{I}+\mathbf{K}\right)\cdot arphi=\psi$ where arphi=z''.

Compact operator ${f K}$ in a suitable Banach space of Chebyshev coefficients

- $\mathbf{K} \cdot \varphi = t \left(4 \frac{3}{1 + e \cos t} \right) \int_{-1}^{t} \varphi(s) ds \left(4 \frac{3}{1 + e \cos t} \right) \int_{-1}^{t} s \varphi(s) ds.$
- $\bullet \ \psi(t) = c \left(z(-1) + (t+1)z'(-1)\right)\left(4 \frac{3}{1 + e\cos t}\right).$

- We want to solve $z''(t) + \left(4 \frac{3}{1 + 0.5\cos t}\right)z(t) = c$ with z(-1) = 0, z'(-1) = 1 and c = 1.
- \approx Equivalent to $\left(\mathbf{I} + \mathbf{K}^{[\mathbf{N}]}\right) \cdot \varphi = \psi$ where $\varphi = z''$.

Compact operator ${f K}$ in a suitable Banach space of Chebyshev coefficients

- $\mathbf{K} \cdot \varphi = t \left(4 \frac{3}{1 + e \cos t} \right) \int_{-1}^{t} \varphi(s) ds \left(4 \frac{3}{1 + e \cos t} \right) \int_{-1}^{t} s \varphi(s) ds.$
- $\bullet \ \psi(t) = c \left(z(-1) + (t+1)z'(-1)\right)\left(4 \frac{3}{1 + e\cos t}\right).$
- How to get an efficient final dimensional approximation?

Approximating our Example

• Approximation of $t\mapsto 4-\frac{3}{1+e\cos t}$ over [-1,1] (e=0.5):

 $\alpha(t)$

Approximating our Example

• Approximation of $t\mapsto 4-\frac{3}{1+e\cos t}$ over [-1,1] (e=0.5):

 $\alpha(t)$

1.82

$$|\alpha(t) - 1.82| \le 0.2$$

Approximating our Example

 \bullet Approximation of $t\mapsto 4-\frac{3}{1+e\cos t}$ over [-1,1] (e=0.5):

 $\alpha(t)$

 $1.82 - 0.18T_2(t)$

$$|\alpha(t) - (1.82 - 0.18T_2(t))| \le 0.007$$

The Almost-Banded Structure of the Operator ${f K}$ - Example

$$\mathbf{K} \cdot \varphi = t \left(4 - \frac{3}{1 + e \cos t} \right) \int_{t_0}^t \varphi(s) \mathrm{d}s + \left(-4 + \frac{3}{1 + e \cos t} \right) \int_{t_0}^t s \varphi(s) \mathrm{d}s$$

The Almost-Banded Structure of the Operator ${f K}$ - Example

$$\mathbf{K}\cdot\boldsymbol{\varphi}\approx t(1.82-0.18T_2(t))\int_{t_0}^t\varphi(s)\mathrm{d}s + (-1.82+0.18T_2(t))\int_{t_0}^ts\varphi(s)\mathrm{d}s$$

The Almost-Banded Structure of the Operator ${f K}$ - Example

$$\mathbf{K} \cdot \varphi \approx \underbrace{(1.73T_1(t) - 0.09T_3(t))}_{\beta_0(t)} \int_{t_0}^t \varphi(s) \mathrm{d}s + \underbrace{(-1.82 + 0.18T_2(t))}_{\beta_1(t)} \int_{t_0}^t s \varphi(s) \mathrm{d}s$$

The Almost-Banded Structure of the Operator ${\bf K}$ - Example

$$\mathbf{K} \cdot \varphi \approx \underbrace{\left(1.73T_1(t) - 0.09T_3(t)\right)}_{\beta_0(t)} \int_{t_0}^t \varphi(s) \mathrm{d}s + \underbrace{\left(-1.82 + 0.18T_2(t)\right)}_{\beta_1(t)} \int_{t_0}^t s \varphi(s) \mathrm{d}s$$

The Almost-Banded Structure of the Operator ${f K}$

The infinite-dimensional operator ${f K}.$

The Almost-Banded Structure of the Operator ${f K}$

The final-dimensional truncation $\mathbf{K}^{[N]}$.

• We want to solve $z''(t)+\left(4-\frac{3}{1+0.5\cos t}\right)z(t)=c$ with z(-1)=0, z'(-1)=1 and c=1.

- We want to solve $z''(t)+\left(4-\frac{3}{1+0.5\cos t}\right)z(t)=c$ with z(-1)=0, z'(-1)=1 and c=1.
 - Equivalent to $\left(\mathbf{I}+\mathbf{K}\right)\cdot \varphi=\psi$ where $\varphi=z''.$

Compact operator ${f K}$ in a suitable Banach space of Chebyshev coefficients

- $\bullet \ \ \mathbf{K} \cdot \boldsymbol{\varphi} = t \left(4 \frac{3}{1 + e \cos t} \right) \int_{-1}^t \boldsymbol{\varphi}(s) \mathrm{d}s \left(4 \frac{3}{1 + e \cos t} \right) \int_{-1}^t s \boldsymbol{\varphi}(s) \mathrm{d}s.$
- $\psi(t) = c (z(-1) + (t+1)z'(-1))\left(4 \frac{3}{1 + e\cos t}\right).$

- We want to solve $z''(t) + \left(4 \frac{3}{1 + 0.5 \cos t}\right) z(t) = c$ with z(-1) = 0, z'(-1) = 1 and c = 1.
- \approx Equivalent to $\left(\mathbf{I} + \mathbf{K}^{[\mathbf{N}]}\right) \cdot \varphi = \psi$ where $\varphi = z''$.

Compact operator ${f K}$ in a suitable Banach space of Chebyshev coefficients

- $\bullet \ \ \mathbf{K} \cdot \boldsymbol{\varphi} = t \left(4 \frac{3}{1 + e \cos t} \right) \int_{-1}^t \boldsymbol{\varphi}(s) \mathrm{d}s \left(4 \frac{3}{1 + e \cos t} \right) \int_{-1}^t s \boldsymbol{\varphi}(s) \mathrm{d}s.$
- $\psi(t) = c (z(-1) + (t+1)z'(-1))\left(4 \frac{3}{1 + e\cos t}\right).$

- We want to solve $z''(t)+\left(4-\frac{3}{1+0.5\cos t}\right)z(t)=c$ with z(-1)=0, z'(-1)=1 and c=1.
- \approx Equivalent to $\left(\mathbf{I} + \mathbf{K}^{[\mathbf{N}]}\right) \cdot \varphi = \psi$ where $\varphi = z''$.

Compact operator ${\mathbf K}$ in a suitable Banach space of Chebyshev coefficients

$$\bullet \ \ \mathbf{K} \cdot \boldsymbol{\varphi} = t \left(4 - \frac{3}{1 + e \cos t} \right) \int_{-1}^t \boldsymbol{\varphi}(s) \mathrm{d}s - \left(4 - \frac{3}{1 + e \cos t} \right) \int_{-1}^t s \boldsymbol{\varphi}(s) \mathrm{d}s.$$

•
$$\psi(t) = c - (z(-1) + (t+1)z'(-1))\left(4 - \frac{3}{1 + e\cos t}\right).$$

ullet We have a matrix representation of $\mathbf{I} + \mathbf{K}^{[N]}$.

- We want to solve $z''(t)+\left(4-\frac{3}{1+0.5\cos t}\right)z(t)=c$ with z(-1)=0, z'(-1)=1 and c=1.
- \approx Equivalent to $\left(\mathbf{I} + \mathbf{K}^{[\mathbf{N}]}\right) \cdot \varphi = \psi$ where $\varphi = z''$.

Compact operator ${\mathbf K}$ in a suitable Banach space of Chebyshev coefficients

$$\bullet \ \ \mathbf{K} \cdot \boldsymbol{\varphi} = t \left(4 - \frac{3}{1 + e \cos t} \right) \int_{-1}^t \boldsymbol{\varphi}(s) \mathrm{d}s - \left(4 - \frac{3}{1 + e \cos t} \right) \int_{-1}^t s \boldsymbol{\varphi}(s) \mathrm{d}s.$$

$$\bullet \ \psi(t) = c - \left(z(-1) + (t+1)z'(-1)\right) \left(4 - \frac{3}{1 + e\cos t}\right).$$

- We have a matrix representation of $\mathbf{I} + \mathbf{K}^{[N]}$.
- $\psi \approx -0.82T_0 1.73T_1 + 0.18T_2 + 0.09T_3$.

- We want to solve $z''(t)+\left(4-\frac{3}{1+0.5\cos t}\right)z(t)=c$ with z(-1)=0, z'(-1)=1 and c=1.
- \approx Equivalent to $\left(\mathbf{I} + \mathbf{K}^{[\mathbf{N}]}\right) \cdot \varphi = \psi$ where $\varphi = z''$.

Compact operator ${f K}$ in a suitable Banach space of Chebyshev coefficients

$$\bullet \ \ \mathbf{K} \cdot \boldsymbol{\varphi} = t \left(4 - \frac{3}{1 + e \cos t} \right) \int_{-1}^{t} \boldsymbol{\varphi}(s) \mathrm{d}s - \left(4 - \frac{3}{1 + e \cos t} \right) \int_{-1}^{t} s \boldsymbol{\varphi}(s) \mathrm{d}s.$$

$$\bullet \ \psi(t) = c - \left(z(-1) + (t+1)z'(-1)\right) \left(4 - \frac{3}{1 + e\cos t}\right).$$

- ullet We have a matrix representation of $\mathbf{I} + \mathbf{K}^{[N]}$.
- $\psi \approx -0.82T_0 1.73T_1 + 0.18T_2 + 0.09T_3$.
- Inversion of the linear system in linear time via Olver & Townsend algorithm:

- We want to solve $z''(t) + \left(4 \frac{3}{1 + 0.5\cos t}\right)z(t) = c$ with z(-1) = 0, z'(-1) = 1 and c = 1.
- ullet pprox Equivalent to $\left(\mathbf{I}+\mathbf{K}^{[\mathbf{N}]}\right)\cdot arphi=\psi$ where $arphi=z^{\prime\prime}.$

Compact operator ${f K}$ in a suitable Banach space of Chebyshev coefficients

- $\bullet \ \ \mathbf{K} \cdot \varphi = t \left(4 \frac{3}{1 + e \cos t} \right) \int_{-1}^t \varphi(s) \mathrm{d}s \left(4 \frac{3}{1 + e \cos t} \right) \int_{-1}^t s \varphi(s) \mathrm{d}s.$
- $\bullet \ \psi(t) = c \left(z(-1) + (t+1)z'(-1)\right)\left(4 \frac{3}{1 + e\cos t}\right).$
- ullet We have a matrix representation of $\mathbf{I} + \mathbf{K}^{[N]}$.
- $\psi \approx -0.82T_0 1.73T_1 + 0.18T_2 + 0.09T_3$.
- Inversion of the linear system in linear time via Olver & Townsend algorithm:

$$\begin{split} \widetilde{\varphi} &= -0.6T_0 - 1.19T_1 + 0.62T_2 + 0.17T_3 - 0.05T_4 - 0.01T_5 \\ &+ 2.1 \cdot 10^{-3}T_6 + 3.2 \cdot 10^{-3}T_7 - 5.8 \cdot 10^{-5}T_8 - 7.6 \cdot 10^{-6}T_9 + 1.2 \cdot 10^{-6}T_{10} \\ &+ 1.4 \cdot 10^{-7}T_{11} - 1.9 \cdot 10^{-8}T_{12} - 2.0 \cdot 10^{-9}T_{13} + 2.6 \cdot 10^{-10}T_{14} + 2.5 \cdot 10^{-11}T_{15} \\ &- 3.0 \cdot 10^{-12}T_{16} - 2.6 \cdot 10^{-13}T_{17} + 3.0 \cdot 10^{-14}T_{18} + 2.5 \cdot 10^{-15}T_{19} - 2.6 \cdot 10^{-16}T_{20} \end{split}$$

ullet Recall: For the integral equation of unknown arphi

$$(\mathbf{I} + \mathbf{K}) \cdot \varphi = \psi,$$

we want to validate an approximate solution $\widetilde{\varphi}$, in a suitable Banach space H^1 :

$$\|\widetilde{\varphi} - \varphi^*\|_{\mathrm{H}^1}$$
.

ullet Recall: For the integral equation of unknown arphi

$$(\mathbf{I} + \mathbf{K}) \cdot \varphi = \psi,$$

we want to validate an approximate solution $\widetilde{\varphi}$, in a suitable Banach space H^1 :

$$\|\widetilde{\varphi} - \varphi^*\|_{\mathrm{H}^1}$$
.

ullet Recall: For the integral equation of unknown arphi

$$(\mathbf{I} + \mathbf{K}) \cdot \varphi = \psi,$$

we want to validate an approximate solution $\widetilde{\varphi}$, in a suitable Banach space H^1 :

$$\|\widetilde{\varphi} - \varphi^*\|_{\mathbf{H}^1}$$
.

• Reformulation as a fixed point equation:

$$\varphi + \mathbf{K} \cdot \varphi = \psi \Leftrightarrow \mathbf{T} \cdot \varphi = \varphi,$$

$$\mathbf{T} \cdot \varphi = \varphi - \mathbf{A} \cdot (\varphi + \mathbf{K} \cdot \varphi - \psi) \,, \qquad \quad \mathbf{A} \approx (\mathbf{I} + \mathbf{K})^{-1} \ \text{injective}.$$

ullet Recall: For the integral equation of unknown arphi

$$(\mathbf{I} + \mathbf{K}) \cdot \varphi = \psi,$$

we want to validate an approximate solution $\widetilde{\varphi}$, in a suitable Banach space H^1 :

$$\|\widetilde{\varphi} - \varphi^*\|_{\mathbf{H}^1}$$
.

• Reformulation as a fixed point equation:

$$\varphi + \mathbf{K} \cdot \varphi = \psi \Leftrightarrow \mathbf{T} \cdot \varphi = \varphi.$$

$$\mathbf{T} \cdot \boldsymbol{\varphi} = \boldsymbol{\varphi} - \mathbf{A} \cdot (\boldsymbol{\varphi} + \mathbf{K} \cdot \boldsymbol{\varphi} - \boldsymbol{\psi}) \,, \qquad \quad \mathbf{A} \approx (\mathbf{I} + \mathbf{K})^{-1} \ \text{injective}.$$

• If $\|D\mathbf{T}\|_{\mathbf{H}^1} = \|\mathbf{I} - \mathbf{A} (\mathbf{I} + \mathbf{K})\|_{\mathbf{H}^1} = k < 1$, \mathbf{T} is contractive and we get a tight enclosure of the approximation error:

$$\frac{\|\mathbf{T}\cdot\widetilde{\varphi}-\widetilde{\varphi}\|_{\mathbf{q}^1}}{1+k}\leq \|\widetilde{\varphi}-\varphi^*\|_{\mathbf{q}^1}\leq \frac{\|\mathbf{T}\cdot\widetilde{\varphi}-\widetilde{\varphi}\|_{\mathbf{q}^1}}{1-k}.$$

Approximate Inverse for our Example

We are looking for an approximate inverse matrix:

$$\mathbf{A} \approx (\mathbf{I} + \mathbf{K})^{-1}.$$

Approximate Inverse for our Example

We are looking for an approximate inverse matrix:

$$\mathbf{A} \approx (\mathbf{I} + \mathbf{K}^{[N]})^{-1}.$$

Approximate Inverse for our Example

We are looking for an approximate inverse matrix:

$$\mathbf{A} \approx (\mathbf{I} + \mathbf{K}^{[N]})^{-1}.$$

0.161442	0.292863	0.309506	-9.202732	0.032680	-0.025359	0.022468	-0.016198	0.012178	0.003592	0.007748	-0.006386	0.005355	0.094555	0.003922	-0.003413	0.002997	-0.002652	0.002364	-0.002123	0.001915
-0.951737	1.182179	0.521477	-9.177429	-0.063659	0.010819	0.094034	-0.002709	0.002226	-0.802839	0.001797	-0.001567	0.001369	-9.091291	0.001059	-0.000939	0.000836	-0.000749	0.000675	-0.000611	0.000555
0.013779	-0.233695	1.197801	0.162217	-0.147560	0.020291	-0.013304	0.012961	-0.009866	0.007675	-0.006197	0.005110	-0.004285	0.003645	-9.003138	0.002731	-0.002358	0.092122	-0.001892	0.001699	-0.001532
0.137573	-0.112050	-0.075379	1.156558	0.009202	-0.048363	-0.000583	0.002026	0	0	0	0	0	0	0	0	0	0	0	0	0
0.003107	0.020279	-0.058441	-0.014077	1.079375	-0.001761	-0.025165	-0.001125	0.001745	-0.003666	0.000523	0	0	0	0	0	0	0	0	0	0
-0.007791	0.007936	0.004269	-0.034920	0	1.043723	0	-0.017202	0	0.000559	0	0	0	0	0	0	0	0	0	0	0
0	0	0.003439	0	-0.020460	0	1.028868	0	-0.012114	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0.001781	0	-0.013596	0	1.020722	0	-0.008981	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0.001018	0	-0.009855	0	1.015624	0	-0.006950	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0.000666	0	-0.007508	0	1.012219	0	-0.005544	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	-0.005923	0	1.009828	0	-0.004527	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	-0.004798	0	1.008081	0	-0.003767	0	0	0	0	0	0	0
0	0	0	0		0	0	0	0	0	-0.003969	0	1.006764	0	-0.003185	0	0	0	0	0	0
0	0	0	0		0	0	0	0	0	0	-0.003339	0	1.005746		-0.002729	0	0	0	0	0
0	0	0			0	0	0	0	0	0	0	-0.002849	0	1.004943		-0.002364	0	0	0	0
0	0	0			0	0	0	0	0	0	0	0	-0.002460		1.004298	0	-0.002068	0	0	0
0	0	0			0	0	0	0	0	0	0	0	0	-0.002146	0	1.093772	0	-0.001825	0	0
0	0	0	0		0	0	0	0	0	0	0	0	0	0	-0.001888	0	1.093337	0	-0.001622	0
0	0	0		0	0	0	0	0	0	0	0	0	0		0	-0.001675	0	1.002973	0	-0.001451
0	0	0			0	0	0	0	0	0	0	0	0			0	-0.001496	0	1.002664	0
0											0							-0 001344	0	1 982483

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{H}^1} \le \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{H}^1} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{H}^1}.$$

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathrm{Y}^1} \leq \underbrace{\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathrm{Y}^1}}_{\text{Approximation error}} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathrm{Y}^1}.$$

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{Y}^1} \leq \underbrace{\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{Y}^1}}_{\text{Approximation error}} + \underbrace{\|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{Y}^1}}_{\text{Truncation error}}.$$

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{H}^1} \leq \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{H}^1} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{H}^1}.$$

• Decomposition of the operator norm:

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{H}^{1}} \le \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{H}^{1}} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{H}^{1}}.$$

ullet Addition, Multiplication and 1-norm of almost-banded matrices: linear in N.

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{H}^1} \le \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{H}^1} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{H}^1}.$$

- ullet Addition, Multiplication and 1-norm of almost-banded matrices: linear in N.
- ullet Hence, this certification step is linear in N.

• Decomposition of the operator norm:

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{q}^{1}} \le \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{q}^{1}} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{q}^{1}}.$$

- ullet Addition, Multiplication and 1-norm of almost-banded matrices: linear in N.
- ullet Hence, this certification step is linear in N.

Example

In our case, the approximation error is:

$$\|\mathbf{I} - \mathbf{A} \left(\mathbf{I} + \mathbf{K}^{[N]} \right) \|_{\mathbf{Y}^1} \le 1.5 \cdot 10^{-3}$$

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{q}^1} \le \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{q}^1} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{q}^1}.$$

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{H}^1} \leq \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{H}^1} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{H}^1}.$$

 \mathbf{K}

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{q}^1} \leq \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{q}^1} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{q}^1}.$$

$$\mathbf{K} - \mathbf{K}^{[N]}$$

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{q}^1} \leq \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{q}^1} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{q}^1}.$$

$$\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})$$

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{q}^1} \leq \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{q}^1} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{q}^1}.$$

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{q}^1} \leq \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{q}^1} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{q}^1}.$$

• Direct computation.

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{q}^1} \leq \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{q}^1} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{q}^1}.$$

- Direct computation.
- \bullet Apply ${\bf A}$ and direct computation.

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{q}^1} \leq \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{q}^1} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{q}^1}.$$

- Direct computation.
- \bullet Apply ${\bf A}$ and direct computation.
- \bullet Bound the remaining $\it infinite$ number of colums based on decrease like 1/i and $1/i^2$

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{q}^1} \leq \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{q}^1} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{q}^1}.$$

- Direct computation.
- \bullet Apply ${\bf A}$ and direct computation.
- \bullet Bound the remaining $\it infinite$ number of colums based on decrease like 1/i and $1/i^2$

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{q}^1} \leq \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{q}^1} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{q}^1}.$$

- Direct computation.
- \bullet Apply ${\bf A}$ and direct computation.
- \bullet Bound the remaining $\it infinite$ number of colums based on decrease like 1/i and $1/i^2$

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{q}^1} \le \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{q}^1} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{q}^1}.$$

- Direct computation.
- ullet Apply $oldsymbol{A}$ and direct computation.
- \bullet Bound the remaining $\it infinite$ number of colums based on decrease like 1/i and $1/i^2$

$$\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})$$

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{q}^1} \le \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{q}^1} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{q}^1}.$$

- Direct computation.
- ullet Apply $oldsymbol{A}$ and direct computation.
- \bullet Bound the remaining $\it infinite$ number of colums based on decrease like 1/i and $1/i^2$

$$\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})$$

$$1.3 \cdot 10^{-3}$$

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{q}^1} \le \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{q}^1} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{q}^1}.$$

- Direct computation.
- \bullet Apply ${\bf A}$ and direct computation.
- \bullet Bound the remaining $\it infinite$ number of colums based on decrease like 1/i and $1/i^2$

$$\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})$$

$$1.3 \cdot 10^{-3}$$

$$5.2 \cdot 10^{-3}$$

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{q}^1} \le \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{q}^1} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{q}^1}.$$

- Direct computation.
- ullet Apply $oldsymbol{A}$ and direct computation.
- \bullet Bound the remaining $\it infinite$ number of colums based on decrease like 1/i and $1/i^2$

$$\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})$$

$$1.3 \cdot 10^{-3}$$

$$5.2 \cdot 10^{-3}$$

$$9.4 \cdot 10^{-3} + 2.7 \cdot 10^{-3}$$

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{q}^1} \le \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{q}^1} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{q}^1}.$$

- Direct computation.
- \bullet Apply ${\bf A}$ and direct computation.
- \bullet Bound the remaining infinite number of colums based on decrease like 1/i and $1/i^2$

$$\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})$$

$$1.3 \cdot 10^{-3}$$

$$5.2 \cdot 10^{-3}$$

$$1.21 \cdot 10^{-2}$$

$$\|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K})\|_{\mathbf{q}^1} \le \|\mathbf{I} - \mathbf{A}(\mathbf{I} + \mathbf{K}^{[N]})\|_{\mathbf{q}^1} + \|\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})\|_{\mathbf{q}^1}.$$

- Direct computation.
- Apply A and direct computation.
- Bound the remaining infinite number of colums based on decrease like 1/i and $1/i^2$

$$\mathbf{A}(\mathbf{K} - \mathbf{K}^{[N]})$$

$$1.3 \cdot 10^{-3}$$

$$5.2 \cdot 10^{-3}$$

$$1.21 \cdot 10^{-2}$$

$$1.21 \cdot 10^{-2} \Rightarrow 1.21 \cdot 10^{-2}$$

•
$$k \le 1.5 \cdot 10^{-3} + 1.21 \cdot 10^{-2}$$
.

•
$$k \le 1.36 \cdot 10^{-2}$$
.

- $k \le 1.36 \cdot 10^{-2}$.
- $\bullet \ \|\mathbf{T}\cdot\widetilde{\varphi}-\widetilde{\varphi}\|_{\mathbf{q}^1}=\|\mathbf{A}(\widetilde{\varphi}+\mathbf{K}\cdot\widetilde{\varphi}-\psi)\|_{\mathbf{q}^1}=6.48\cdot 10^{-16}.$

- $k < 1.36 \cdot 10^{-2}$.
- $\|\mathbf{T} \cdot \widetilde{\varphi} \widetilde{\varphi}\|_{\mathbf{H}^1} = \|\mathbf{A}(\widetilde{\varphi} + \mathbf{K} \cdot \widetilde{\varphi} \psi)\|_{\mathbf{H}^1} = 6.48 \cdot 10^{-16}.$
- Hence:

$$\frac{6.48 \cdot 10^{-16}}{1 + \mathbf{k}} \leq \|\widetilde{\varphi} - \varphi^*\|_{\mathbf{H}^1} \leq \frac{6.48 \cdot 10^{-16}}{1 - \mathbf{k}}$$

- $k \le 1.36 \cdot 10^{-2}$.
- $\|\mathbf{T} \cdot \widetilde{\varphi} \widetilde{\varphi}\|_{\mathbf{H}^1} = \|\mathbf{A}(\widetilde{\varphi} + \mathbf{K} \cdot \widetilde{\varphi} \psi)\|_{\mathbf{H}^1} = 6.48 \cdot 10^{-16}$.
- Hence:

$$6.39 \cdot 10^{-16}$$

$$\|\widetilde{\varphi} - \varphi^*\|_{\tau}$$

$$6.39 \cdot 10^{-16}$$
 $\leq \|\widetilde{\varphi} - \varphi^*\|_{\mathbf{H}^1} \leq 6.57 \cdot 10^{-16}$

Conclusion

- Ask F. Bréhard for TchebyApprox: a C library to compute certified approximations to solutions of Linear Ordinary Differential Equations, using truncated Chebyshev series & Generalisation to Systems of LODEs https://gforge.inria.fr/projects/tchebyapprox
- D-finite functions provide a rich framework and structure
- P-recursive sequences for other orthogonal basis expansions

Even ducks are D-finite!


```
> with (gfun):

> deq:=holexprtodiffeq(sin(x), y(x));

deq := \left\{ \frac{d^2}{dx^2} y(x) + y(x), y(0) = 0, D(y)(0) = 1 \right\}
> diffeqtorec(deq, y(x), u(k));

\left\{ u(k) + (k^2 + 3k + 2) u(k + 2), u(0) = 0, u(1) = 1 \right\}
```

^{*}B. Salvy and P. Zimmermann. – Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM transactions on mathematical software, 1994.

[†]A. Benoit and B. Salvy. – Chebyshev expansions for solutions of linear differential equations. In J. P. May, editor, ISSAC '09, pages 23-30. ACM, 2009.

 $deq = \left\{ \left(-x^7 - 6x^6 - 32x^5 - 112x^4 - 228x^3 - 236x^2 - 96x \right)y(x) + \left(x^7 + 11x^6 + 58x^5 + 206x^4 + 452x^3 + 230x^3 - 440x^2 - 352x - 112 \right) \left(\frac{d^2}{dx^2}y(x) \right) + \left(x^7 + 7x^6 + 28x^5 + 84x^4 + 176x^3 + 232x^2 + 176x + 66x^2 + 232x^2 + 176x^2 + 66x^2 + 176x^2 + 176x^2$

 \rightarrow deq:=holexprtodiffeq((x^2+2*x+4)*sin(x)+exp(x)/(x+2), y(x));

^{*}B. Salvy and P. Zimmermann. – Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM transactions on mathematical software, 1994.

[†]A. Benoit and B. Salvy. – Chebyshev expansions for solutions of linear differential equations. In J. P. May, editor, ISSAC '09, pages 23-30, ACM, 2009.

Examples of recurrences* †

 \rightarrow deg:=holexprtodiffeg((x^2+2*x+4)*sin(x)+exp(x)/(x+2), y(x));

$$deq = \left\{ \left(-x^7 - 6x^6 - 32x^5 - 112x^4 - 228x^3 - 236x^2 - 96x \right) y(x) + \left(x^7 + 11x^6 + 58x^5 + 206x^4 + 452x^3 + 220x^3 - 440x^2 - 352x - 112 \right) \left(\frac{d^2}{dx^2} y(x) \right) + \left(x^7 + 7x^6 + 28x^5 + 84x^4 + 176x^3 + 232x^2 + 176x + 66x^4 + 126x^3 + 126x^2 + 126$$

> diffeqtorec(deq, y(x), u(k));

$$\left\{ -u(k) + (k-5)u(k+1) + \left(-k^2 + 8k - 12\right)u(k+2) + \left(k^3 - 4k^2 + 19k + 8\right)u(k+3) + \left(7k^3 + 13k^2 + \left(84k^3 + 940k^2 + 3272k + 3840\right)u(k+6) + \left(176k^3 + 2728k^2 + 13480k + 21056\right)u(k+7) + \left(232k^3 + 80640\right)u(k+9) + \left(64k^3 + 1728k^2 + 15488k + 46080\right)u(k+10), u(0) = \frac{1}{2}, u(1) = \frac{17}{4}, u(2) = \frac{17}{8}, u(1) = \frac{17}{7680}, u(9) = -\frac{103}{322560} \right\}$$

> afsRecurrence[diffeqToGFSRec](deg, v(x), u(n), functions=ChebyshevT(n,x));

 $\left(-n^2-23\,n-132\right)u(n)+\left(2\,n^3+36\,n^2+34\,n-1320\right)u(n+1)+\left(-4\,n^4-60\,n^3+156\,n^2+3022\,n-6936\right)u(n+2)+\left(8\,n^5+152\,n^4+482\,n^3-428\,n^2+22826\,n+7320\,n+1$ +3) + $(112 n^5 + 2760 n^4 + 19616 n^3 + 41261 n^2 + 148189 n + 370944) u(n + 4)$ + $(952 n^5 + 28056 n^4 + 279928 n^3 + 1130928 n^2 + 2254672 n + 3036552) u(n + 5)$ + $(600 n^4 + 19616 n^3 + 41261 n^2 + 148189 n + 370944) u(n + 4)$ + $(952 n^5 + 28056 n^4 + 279928 n^3 + 1130928 n^2 + 2254672 n + 3036552) u(n + 5)$ + $(600 n^4 + 19616 n^3 + 41261 n^2 + 148189 n + 370944) u(n + 4)$ + $(952 n^5 + 28056 n^4 + 279928 n^3 + 1130928 n^2 + 2254672 n + 3036552) u(n + 5)$ + $(600 n^4 + 19616 n^3 + 41261 n^2 + 148189 n + 370944) u(n + 4)$ + $(952 n^5 + 28056 n^4 + 279928 n^3 + 1130928 n^2 + 2254672 n + 3036552) u(n + 5)$ $+206088 \, \kappa^4 + 2561712 \, \kappa^3 + 14269656 \, \kappa^2 + 35990280 \, \kappa + 35179608 \, \mu (\kappa + 6) + (27176 \, \kappa^5 + 1042584 \, \kappa^4 + 15178936 \, \kappa^3 + 104070256 \, \kappa^2 + 334823360 \, \kappa + 404112360) \, \mu (\kappa + 6) + (27176 \, \kappa^5 + 1042584 \, \kappa^4 + 15178936 \, \kappa^3 + 104070256 \, \kappa^2 + 334823360 \, \kappa + 404112360) \, \mu (\kappa + 6) + (27176 \, \kappa^5 + 1042584 \, \kappa^4 + 15178936 \, \kappa^3 + 104070256 \, \kappa^2 + 334823360 \, \kappa + 404112360) \, \mu (\kappa + 6) + (27176 \, \kappa^5 + 1042584 \, \kappa^4 + 15178936 \, \kappa^3 + 104070256 \, \kappa^2 + 334823360 \, \kappa + 404112360) \, \mu (\kappa + 6) + (27176 \, \kappa^5 + 1042584 \, \kappa^4 + 15178936 \, \kappa^3 + 104070256 \, \kappa^2 + 334823360 \, \kappa + 404112360) \, \mu (\kappa + 6) + (27176 \, \kappa^5 + 1042584 \, \kappa^4 + 15178936 \, \kappa^3 + 104070256 \, \kappa^2 + 334823360 \, \kappa + 404112360) \, \mu (\kappa + 6) + (27176 \, \kappa^5 + 1042584 \, \kappa^4 + 15178936 \, \kappa^3 + 104070256 \, \kappa^2 + 334823360 \, \kappa + 404112360) \, \mu (\kappa + 6) + (27176 \, \kappa^5 + 1042584 \, \kappa^4 + 15178936 \, \kappa^3 + 104070256 \, \kappa^2 + 334823360 \, \kappa + 404112360) \, \mu (\kappa + 6) + (27176 \, \kappa^5 + 1042584 \, \kappa^4 + 15178936 \, \kappa^3 + 104070256 \, \kappa^2 + 334823360 \, \kappa + 404112360) \, \mu (\kappa + 6) + (27176 \, \kappa^5 + 1042584 \, \kappa^4 + 15178936 \, \kappa^3 + 104070256 \, \kappa^2 + 334823360 \, \kappa + 404112360) \, \mu (\kappa + 6) + (27176 \, \kappa^5 + 1042584 \, \kappa^4 + 15178936 \, \kappa^3 + 104070256 \, \kappa^2 + 334823360 \, \kappa + 404112360) \, \mu (\kappa + 6) + (27176 \, \kappa^5 + 1042584 \, \kappa^4 + 15178936 \, \kappa^3 + 104070256 \, \kappa^2 + 334823360 \, \kappa + 404112360) \, \mu (\kappa + 6) + (27176 \, \kappa^5 + 1042584 \, \kappa^4 + 104070256 \, \kappa^2 + 334823360 \, \kappa + 404112360) \, \mu (\kappa + 6) + (27176 \, \kappa^5 + 1042584 \, \kappa^4 + 104070256 \, \kappa^2 + 334823360 \, \kappa + 404112360) \, \mu (\kappa + 6) + (27176 \, \kappa^5 + 1042584 \, \kappa^4 + 104070256 \, \kappa^2 + 334823360 \, \kappa + 404112360) \, \mu (\kappa + 6) + (27176 \, \kappa^5 + 1042584 \, \kappa^4 + 104070256 \, \kappa^2 + 334823360 \, \kappa^2 + 33482360 \, \kappa^2 + 3348260 \, \kappa^2 + 3348260 \, \kappa^2 + 3348260 \, \kappa^2 +$ $+(82576 n^5 + 3498216 n^4 + 57475040 n^3 + 456412158 n^2 + 1748129922 n + 2579039376) u(n + 8) + (166936 n^5 + 7722200 n^4 + 140212972 n^3 + 1247689432 n^2 + 54381558)$

+9287865144) $u(n+9) + (218816 n^5 + 10940800 n^4 + 215814744 n^3 + 2098122320 n^2 + 10051489972 n + 18991011720) <math>u(n+10) + (166936 n^5 + 8971400 n^4 + 190180972 n^2 + 10051489972 n + 18991011720) u(n+10) + (166936 n^5 + 8971400 n^4 + 190180972 n + 18991011720) u(n+10) + (166936 n^5 + 8971400 n^4 + 190180972 n + 18991011720) u(n+10) + (166936 n^5 + 8971400 n^4 + 190180972 n + 18991011720) u(n+10) + (166936 n^5 + 8971400 n^4 + 190180972 n + 18991011720) u(n+10) + (166936 n^5 + 8971400 n^4 + 190180972 n + 18991011720) u(n+10) + (166936 n^5 + 8971400 n^4 + 190180972 n + 18991011720) u(n+10) + (166936 n^5 + 8971400 n^4 + 190180972 n + 18991011720) u(n+10) + (166936 n^5 + 8971400 n^4 + 190180972 n + 18991011720) u(n+10) + (166936 n^5 + 8971400 n^4 + 190180972 n + 18991011720) u(n+10) + (166936 n^5 + 8971400 n^4 + 190180972 n + 18991011720) u(n+10) + (166936 n^5 + 8971400 n^4 + 190180972 n + 18991011720) u(n+10) + (166936 n^5 + 8971400 n^4 + 190180972 n + 18991011720) u(n+10) + (166936 n^5 + 8971400 n^4 + 1901800 n^4 + 19018$ $+1986688888\pi^2 + 10224544996\pi + 20746455576$) $u(x+11) + (82576\pi^5 + 4759384\pi^4 + 107921760\pi^3 + 1202451842\pi^2 + 6579579602\pi + 14147655864)$ $u(x+12) + (277647645876\pi^3 + 4759384\pi^4 + 107921760\pi^3 + 1202451842\pi^2 + 6579579602\pi + 14147655864)$ $+ 1675016 n^4 + 40476216 n^3 + 478544304 n^2 + 2764848320 n + 6245500440) u(n + 13) + (6048 n^5 + 398712 n^4 + 10266672 n^3 + 128661864 n^2 + 782842440 n + 1849979592)^2 n^2 + 1675016 n^4 + 40476216 n^3 + 478544304 n^2 + 2764848320 n + 6245500440) u(n + 13) + (6048 n^5 + 398712 n^4 + 10266672 n^3 + 128661864 n^2 + 782842440 n + 1849979592)^2 n^2 + 1675016 n^2 +$

+14) + $(952 n^5 + 67144 n^4 + 1843448 n^3 + 24490352 n^2 + 156739152 n + 386549688) u(n + 15) + <math>(112 n^5 + 8440 n^4 + 246816 n^3 + 3471699 n^2 + 23316949 n + 59816436)$ +16) $+ (8.8^{5} + 648.8^{4} + 20322.8^{3} + 304548.8^{2} + 2154346.8 + 5756496) u(n + 17) + (4.8^{4} + 260.8^{3} + 5844.8^{2} + 52782.8 + 164976) u(18 + 8) + (2.8^{3} + 84.8^{2} + 294.8 + 164976) u(18 + 8) + (2.8^{3} + 84.8^{2} + 2154346.8 + 5756496) u(28 + 17) + (4.8^{4} + 260.8^{3} + 5844.8^{2} + 52782.8 + 164976) u(18 + 8) + (2.8^{3} + 84.8^{2} + 2154346.8 + 5756496) u(28 + 17) + (4.8^{4} + 260.8^{3} + 5844.8^{2} + 2154346.8 + 5756496) u(28 + 17) + (4.8^{4} + 260.8^{3} + 5844.8^{2} + 52782.8 + 164976) u(18 + 8) + (2.8^{3} + 84.8^{2} + 2154346.8 + 5756496) u(28 + 17) + (4.8^{4} + 260.8^{3} + 5844.8^{2} + 2154346.8 + 5756496) u(28 + 17) + (4.8^{4} + 260.8^{3} + 5844.8^{2} + 52782.8 + 164976) u(18 + 8) + (2.8^{3} + 84.8^{2} + 2154346.8 + 5756496) u(28 + 17) + (4.8^{4} + 260.8^{3} + 5844.8^{2} + 52782.8 + 164976) u(18 + 8) + (2.8^{3} + 84.8^{2} + 2154346.8 + 5756496) u(28 + 17) + (4.8^{4} + 260.8^{3} + 5844.8^{2} + 2154346.8 + 5756496) u(28 + 17) + (4.8^{4} + 260.8^{3} + 5844.8^{2} + 52782.8 + 164976) u(18 + 18) + (2.8^{3} + 84.8^{2} + 2154346.8 + 17) + (4.8^{4} + 260.8^{3} + 5844.8^{2} + 52782.8 + 164976) u(18 + 18) + (2.8^{3} + 84.8^{2} + 2154346.8 + 17) + (4.8^{4} + 260.8^{3} + 18$

+3600) $u(19+n) + (n^2 + 17n + 72) u(n + 20)$

B. Salvy and P. Zimmermann. – Gfun: a Maple package for the manipulation of generating and holonomic functions in

Prove that $\sec = \frac{1}{\cos}$ is not D-finite

ullet cos satisfy a 2nd order LODE: $\cos'' + \cos = 0 \leadsto D$ -finite

- $\bullet \ \cos$ satisfy a 2nd order LODE: $\cos^{\prime\prime}+\cos=0 \leadsto \text{D-finite}$
- Suppose $y = \sec$ is D-finite:

- \cos satisfy a 2nd order LODE: $\cos'' + \cos = 0 \rightsquigarrow D$ -finite
- ullet Suppose $y=\sec$ is D-finite:

•
$$y' = y\sqrt{y^2 - 1}$$

•
$$y'' = y^3 + y^2 - y$$

•
$$y^{(2i+1)} = A_i(y)\sqrt{y^2-1}$$
 and $y^{(2i)} = B_i(y)$, with polynomial A_i and B_i of deg $2i+1$

- \cos satisfy a 2nd order LODE: $\cos'' + \cos = 0 \rightsquigarrow D$ -finite
- Suppose $y = \sec$ is D-finite:

•
$$y' = y\sqrt{y^2 - 1}$$

•
$$y'' = y^3 + y^2 - y$$

- $y^{(2i+1)}=A_i(y)\sqrt{y^2-1}$ and $y^{(2i)}=B_i(y)$, with polynomial A_i and B_i of deg 2i+1
- Substitute in $L \cdot y = a_r y^{(r)} + a_{r-1} y^{(r-1)} + \cdots + a_0 y = 0$

- \cos satisfy a 2nd order LODE: $\cos'' + \cos = 0 \rightsquigarrow D$ -finite
- Suppose $y = \sec$ is D-finite:

•
$$y' = y\sqrt{y^2 - 1}$$

•
$$y'' = y^3 + y^2 - y$$

- $y^{(2i+1)}=A_i(y)\sqrt{y^2-1}$ and $y^{(2i)}=B_i(y)$, with polynomial A_i and B_i of deg 2i+1
- Substitute in $L \cdot y = a_r y^{(r)} + a_{r-1} y^{(r-1)} + \dots + a_0 y = 0$
- \leadsto non-zero polynomial equation in x,y, and $\sqrt{y^2-1}$ satisfied by $y\leadsto y$ algebraic \leadsto contradiction