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Previously...

Efficient Machine Implementation of Correctly Rounded Elementary Functions

Numerically compute best polynomial approximation p w.r.t || · ||∞.
Certify a posteriori ||f − p||∞ = max[a,b] |f(x)− p(x)|.
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Rigorous polynomial approximations (RPAs)

||f − p|| ≤

||f − T ||︸ ︷︷ ︸
easier to compute

+ ||T − p||︸ ︷︷ ︸
reduced dependency

f replaced with

a rigorous polynomial approximation : (T,∆)

- polynomial approximation T (of higher degree, but easier to compute & certify)

- interval ∆ s. t. f(x)− T (x) ∈∆, ∀x ∈ [a, b]
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Rigorous polynomial approximations (RPAs)

– Consider "sufficiently smooth" univariate functions f over [a, b].
– f replaced with a rigorous polynomial approximation : (T,∆)

(1). RPAs based on Taylor series
 Taylor Models (TMs).

(2). Near-best RPAs: based on Chebyshev Series
 Chebyshev Models (CMs).

f is an elementary function, e.g. exp(1/ cos(x));

f is solution of a linear ordinary differential equation (with appropriate
initial conditions).

(3). Other orthogonal polynomials...
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Chebyshev Polynomials

Tn(cos(θ)) = cos(nθ)

Ti+1 = 2xTi − Ti−1, T0(x) = 1, T1(x) = x

Orthogonality:∫ 1

−1

Ti(x)Tj(x)
√

1− x2
dx =


0 if i 6= j
π if i = 0
π
2

otherwise

n−1∑
k=0

Ti(xk)Tj(xk) =


0 if i 6= j
n if i = 0
n
2

otherwise

Chebyshev nodes: n distinct real roots in [−1, 1] of Tn

xk = cos
(

(k+1/2)π
n

)
, k = 0, . . . , n− 1.
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Chebyshev Series vs Taylor Series

Two approximations of f :

by Taylor series

f =

+∞∑
n=0

cnx
n, cn =

f (n)(0)

n!
,

or by Chebyshev series

f =

+∞∑
n=−∞

tnTn(x),

tn =
1

π

∫ 1

−1
Tn(t)

f(t)
√

1− t2
dt.

−1 −0.5 0 0.5 1
x

−0.05

−0.025

0.025

0.05
Error of approximation for exp(x)

Taylor expansion
of order 3

Chebyshev expansion
of order 3
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Chebyshev Series vs Taylor Series II

x

Bad approximation outside its circle of convergence

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0.5

1

1.5

arctan(2x)

Taylor approximation
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Chebyshev Series vs Taylor Series II

x

Approximation of arctan(2x) by Chebyshev expansion of degree 11

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0.5

1

1.5

arctan(2x)

Chebyshev approximation

Taylor approximation
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Chebyshev Series vs Taylor Series III

Convergence Domains :

For Taylor series:
disc centered at x0 = 0 which avoids all
the singularities of f

For Chebyshev series:
elliptic disc with foci at ±1 which
avoids all the singularities of f

Taylor series can not converge over entire [−1, 1] unless all singularities lie outside the
unit circle.

X Chebyshev series converge over entire [−1, 1] as soon as there are no real singularities in
[−1, 1].

7 / 38



Chebyshev Series vs Taylor Series III

Convergence Domains :

For Taylor series:
disc centered at x0 = 0 which avoids all
the singularities of f

For Chebyshev series:
elliptic disc with foci at ±1 which
avoids all the singularities of f

Taylor series can not converge over entire [−1, 1] unless all singularities lie outside the
unit circle.

X Chebyshev series converge over entire [−1, 1] as soon as there are no real singularities in
[−1, 1].

7 / 38



Chebyshev Series vs Taylor Series III

Convergence Domains :

For Taylor series:
disc centered at x0 = 0 which avoids all
the singularities of f

For Chebyshev series:
elliptic disc with foci at ±1 which
avoids all the singularities of f

Taylor series can not converge over entire [−1, 1] unless all singularities lie outside the
unit circle.

X Chebyshev series converge over entire [−1, 1] as soon as there are no real singularities in
[−1, 1].

7 / 38



Chebyshev Series vs Taylor Series IV

Truncation Error :

Taylor series, Lagrange formula:

∀x ∈ [−1, 1], ∃ξ ∈ [−1, 1] s.t.

f(x)− T (x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1.

Chebyshev series, Bernstein-like formula:

∀x ∈ [−1, 1], ∃ξ ∈ [−1, 1] s.t.

f(x)− P (x) =
f (n+1)(ξ)

2n(n+ 1)!
.

[X] We should have an improvement of 2n in the width of the Chebyshev truncation error.
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Quality of approximation of truncated Chebyshev series compared to best
polynomial approximation

It is well-known that truncated Chebyshev series πd(f) are near-best uniform approximations
[Chap 5.5, Mason & Handscomb 2003].

Let p∗d is the polynomial of degree at most d that minimizes
‖f − p‖∞ = sup−1≤x≤1 |f(x)− p(x)|.

‖f − πd(f)‖∞ 6
( 4

π2
log d+O(1)

)
︸ ︷︷ ︸

Λd

‖f − p∗d‖∞

Λ10 = 2.22...→ we lose at most 2 bits

Λ30 = 2.65...→ we lose at most 2 bits

Λ100 = 3.13...→ we lose at most 3 bits

Λ500 = 3.78...→ we lose at most 3 bits
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Chebyshev truncations are near-best : Example

x

ex − (1.0000 + 0.9973x
+0.4988x2 + 0.1773x3

+0.0441x4)

ex − (1, 2660T0(x) + 1, 1303T1(x)
+ 0, 2714T2(x) + 0, 0443T3(x)
+ 0, 0054T4(x))

−1 −1/2 1/2 1

−5.10−3

5.10−3

Chebyshev truncation of degree 4

Best approximant of degree 4
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Chebyshev Series vs Taylor Series (9gag version)

11 / 38



Computing Rigorous Polynomial Approximations

Chebyshev series of f =

+∞∑
i=−∞

tiTi(x) :

TWO STEPS:
1. Obtain numerical approximation for coefficients of truncated Chebyshev series

– Discrete orthogonality  t̃i =
n∑
k=0

1
n+1

f(xk)Ti(xk)

when f is elementary, evaluating f at Chebyshev nodes is easy

– When f is given by LODE: TODAY’s Topic

2. A posteriori validation of the solution with Banach Fixed Point Theorem (Newton-like
Operator)
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Some Background in LODEs

Infinite-dimensional linear problem:

L = ∂r + ar−1∂
r−1 + · · ·+ a1∂ + a0 : Cr(I)→ C0(I),

Bt0 : f 7→
(
f(t0), f ′(t0), . . . , f (r−1)(t0)

)
: Cr(I)→ Rr.

Existence and Uniqueness of the Solution

Theorem 1 (Picard-Lindelöf – linear case)

The linear operator:
(L,Bt0 ) : Cr(I)→ C0(I)× Rr,

is a (bicontinuous) isomorphism,

which means that:
The solutions of the linear differential equation form a r-dimensional affine space.

For fixed initial conditions at t0, there is one and only one solution.
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Differentially-finite Functions (Stanley 1980)

Def.

A function y : R→ R is D-finite if it is solution of a (homogeneous) linear differential equation
with polynomial coefficients:

L · y = ary
(r) + ar−1y

(r−1) + · · ·+ a0y = 0, ai ∈ R[x].

The power of symbolic computation

Differential equation + initial conditions = Data Structure

Fast algorithms for evaluation; Automatic proofs of identities
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Examples 2

f(x) = exp(x) ↔ {f ′ − f = 0, f(0) = 1}.

cos, arccos, Airy functions, Bessel functions, ...
About 60% of Abramowitz & Stegun

Fast algorithms for evaluation; Automatic proofs of identities
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D-finite functions

Def.

A function y : R→ R is D-finite if it is solution of a (homogeneous) linear differential equation
with polynomial coefficients:

L · y = ary
(r) + ar−1y

(r−1) + · · ·+ a0y = 0, ai ∈ R[x]. (1)

A sequence (yn) is P-recursive when it satisfies a recurrence relation of the form:

q0(n)yn+l + · · ·+ q`(n)yn = 0, n ≥ 0,

with polynomial coefficients q0, . . . , q`.

Theorem∑
ynxn is solution of a linear differential equation with polynomial coefficients iff the

sequence yn is P-recursive.

Proof.
y(x)↔ yn
αy(x) αyn
xy(x) yn−1

xy′(x) nyn

e.g.

y′ = y ↔ (n+ 1)yn+1 = yn

15 / 38
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D-finite functions

Closure

Stable under operations: sum, product, Hadamard product, Laplace/Borel transform.

y algebraic (exists a non-zero polynomial P s.t. P (x, y) = 0), f D-finite ⇒ y, f ◦ y
D-finite

Some examples with gfun∗

λ exp(xk/k)

y′ = xk−1y ↔ (n+ 1)yn+1 = yn−k+1

diffeq order = 1; rec. order =k  initial values determine the good subspace of
solutions

Compute the coefficient of x1000:

p(x) = (1 + x)1000(1 + x+ x2)500

p′(x)

p(x)
=

1000

1 + x
+ 500

2x+ 1

1 + x+ x2

∗B. Salvy and P. Zimmermann. — Gfun: a Maple package for the manipulation of generating and holonomic
functions in one variable. — ACM transactions on mathematical software, 1994. 16 / 38
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D-finite functions: identity proof

arcsin(x)2 =
∑
k≥0

k!(
1
2

)
. . .
(
k + 1

2

) x2k+2

2k + 2

LODE for arcsin(x): (1− x2)y′′ − xy′ = 0, y(0) = 0, y′(0) = 1

Let h = y2:

h′ = 2yy′

h′′ = 2y′2 + 2yy′′ = 2y′2 +
2x

1− x2
yy′

h′′′ = 4y′y′′ +
2x

1− x2
(y′2 + yy′′) +

(
2

1− x2
+

4x2

(1− x2)2

)
yy′

=

(
2

1− x2
+

6x2

(1− x2)2

)
yy′ +

6x

1− x2
y′2

Vectors h, h′, h′′, h′′′ linear combination of 3 vectors y2, yy′, y′2. Compute linear relation

(1− x2)h′′′ − 3xh′′ − h′ = 0

Linear rec (n+ 1)(n+ 2)(n+ 3)hn+3 − (n+ 1)3hn+1 = 0
easy to check (or to solve in this case)
don’t forget i.c. h(0) = 0, h′(0) = 0, h′′(0) = 2.
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D-finite functions:

Many efficient symbolic algorithms:

many special functions and combinatoric identities

fast evaluation in arbitrary precision (analytic continuation)

fast evaluation of P-recursive sequences.

Software: algolib∗ (gfun, mgfun, numgfun) in Maple or HolonomicFunctions (C.
Koutschan) in Mathematica

Application: Web dictionary of special functions http://ddmf.msr-inria.inria.fr

Note: Examples in the previous slides thanks to B. Salvy’s talks.
more

∗http://algo.inria.fr/libraries/: B. Salvy, M. Mezzarobba, F. Chyzak, A. Bostan
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Uniform Approximation of D-finite Functions

Problem

Given an integer d and a LODE (with polynomial coefficients) and suitable
boundary conditions, find

the Chebyshev basis coefficients of a polynomial p(x) =
∑

0≤k≤d ckTk and
a “small” bound B such that

|p(x)− f(x)| < B for all x in [−1, 1],

where f is the exact solution of the given LODE.

19 / 38



Related Works

Computation of the Chebyshev coefficients for D-finite functions
Using a relation between coefficients Clenshaw (1957)

Using the recurrence relation between the coefficients Fox-Parker (1968)

The tau method of Lanczos (1938), Ortiz (1969-1993)

Today, the computer algebra way and the numerical analyst way (and their interaction)

20 / 38



Chebyshev Series of D-finite Functions

Theorem [60’s, BenoitJoldesMezzarobba11]∑
unTn(x) is solution of a linear differential equation with polynomial coefficients iff the

sequence un is cancelled by a linear recurrence with polynomial coefficients.

Recurrence relation + good initial conditions ⇒ Fast numerical computation of the coefficients

Taylor: exp =
∑

1
n!x

n

Rec: u(n+ 1) =
u(n)
n+1

u(0) = 1 1/0! = 1

u(1) = 1 1/1! = 1

u(2) = 0, 5 1/2! = 0, 5

...
...

u(50) ≈ 3, 28.10
−65

1/50! ≈ 3, 28.10
−65
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Convergent and Divergent Solutions of the Recurrence

Study of the Chebyshev recurrence

If u(n) is solution, then there exists another
solution v(n) ∼ 1

u(n)

S

n

κ−3

κ−2 = · · · = κ2

κ3

Newton polygon of a Chebyshev recurrence

For the recurrence u(n+ 1) + 2nu(n)− u(n− 1)

Two independent solutions are In(1) ∼ 1
(2n)!

and Kn(1) ∼ (2n)!

Miller’s algorithm

To compute the first N coefficients of the most convergent solution of a recurrence relation of
order 2

Initialize u(N) = 0 and u(N − 1) = 1 and compute the first coefficients using the
recurrence backwards

Normalize u with the initial condition of the recurrence
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Back to exp

Example 3

y(x) = ex =
∑∞
n=−∞ cn Tn(x) cn+1 + 2n cn − cn−1 = 0

u0

≈ −4, 40 · 1081

u1

≈ 1, 96 · 1081

u2

≈ −4, 72 · 1080

...
u50

≈ 1, 02 · 102

u51

= 1

u52

= 0

S =
50∑

n=−50

un Tn(0) ≈ −3, 48 · 1081

c0

≈ 1, 27

c1

≈ −5, 65 · 10−1

c2

≈ 1, 36 · 10−1

...
c50

≈ 2, 93 · 10−80

c51

≈ 2, 88 · 10−82

c52

≈ 0

cn :=un/S
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Algorithm for Computing the Coefficients

Input: a differential equation of order r with boundary conditions
Output: a polynomial approximation of degree N of the solution

compute the Chebyshev recurrence of order 2s ≥ 2r

for i from 1 to s
using the recurrence relation backwards, compute the first N coefficients of the
sequence u[i] starting with the initial conditions(

u
[i]

(N + 2s), · · · , u[i]
(N + i), · · · , u[i]

(N + 1)
)

= (0, · · · , 1, · · · , 0)

combine the s sequences u[i] according to the r boundary conditions and the s− r
symmetry relations

Theorem

This algorithm runs in O(N) arithmetic operations
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Quality of polynomial approximations

ex/2√
x+16

–4e–52

–2e–52

2e–52

4e–52

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

–2e–97

–1e–97

1e–97

2e–97

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

–1.5e–142

–1e–142

–5e–143

5e–143

1e–142

1.5e–142

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

3 cos x
− sin x

2

–8e–44

–6e–44

–4e–44

–2e–44

2e–44

4e–44

6e–44

8e–44

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

–1e–102

–5e–103

0

5e–103

1e–102

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

–4e–168

–2e–168

0

2e–168

4e–168

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

e1/(1+2x2)

–4e–08

–3e–08

–2e–08

–1e–08

1e–08

2e–08

3e–08

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

–1e–15

–8e–16

–6e–16

–4e–16

–2e–16

0

2e–16

4e–16

6e–16

8e–16

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

–1e–23

–5e–24

0

5e–24

1e–23

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
x

degree = 30 degree = 60 degree = 90
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Computing the coefficients: The numerical analyst way

Boils down to efficiently solving a structured linear system∗

ar(x)y(r)(x) + ar−1(x)y(r−1)(x) + · · ·+ a0(x)y(x) = 0 and initial conditions

Equivalent to
(
I + K

[N]

)
· ϕ = ψ where ϕ = y(r) :=

∑
k≥0 ckTk

K ·
∑
k≥0

ckTk '

K is almost-banded and compact.

·



c0
c1
c2
...
...
...
cN
cN+1

...

...

...



∗Olver and Townsend Algorithm revisited 26 / 38
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Validated and numerically efficient Chebyshev Series Approximations for
LODEs∗

An example:

Linearized Equation of the In-Plane Motion

z′′(t) +

(
4−

3

1 + e cos t

)
z(t) = c

Approximate solutions via Chebyshev series

Validate approximate solutions with certified error bounds.

∗Many thanks to D. Arzelier, F. Bréhard, N. Brisebarre.
Related articles BréhardBrisebarreJ18, ArantesBréhardGazzino18
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Reformulation as an integral operator

We want to solve z′′(t) +
(

4− 3
1+0.5 cos t

)
z(t) = c with z(−1) = 0, z′(−1) = 1 and

c = 1.

≈

Equivalent to
(
I + K

[N]

)
· ϕ = ψ where ϕ = z′′.

Compact operator K in a suitable Banach space of Chebyshev coefficients

K · ϕ = t

(
4−

3

1 + e cos t

)∫ t

−1

ϕ(s)ds−
(
4−

3

1 + e cos t

)∫ t

−1

sϕ(s)ds.

ψ(t) = c−
(
z(−1) + (t+ 1)z

′
(−1)

)(
4−

3

1 + e cos t

)
.

How to get an efficient final dimensional approximation?

28 / 38



Reformulation as an integral operator

We want to solve z′′(t) +
(

4− 3
1+0.5 cos t

)
z(t) = c with z(−1) = 0, z′(−1) = 1 and

c = 1.

≈

Equivalent to
(
I + K

[N]

)
· ϕ = ψ where ϕ = z′′.

Compact operator K in a suitable Banach space of Chebyshev coefficients

K · ϕ = t

(
4−

3

1 + e cos t

)∫ t

−1

ϕ(s)ds−
(
4−

3

1 + e cos t

)∫ t

−1

sϕ(s)ds.

ψ(t) = c−
(
z(−1) + (t+ 1)z

′
(−1)

)(
4−

3

1 + e cos t

)
.

How to get an efficient final dimensional approximation?

28 / 38



Reformulation as an integral operator

We want to solve z′′(t) +
(

4− 3
1+0.5 cos t

)
z(t) = c with z(−1) = 0, z′(−1) = 1 and

c = 1.

≈ Equivalent to
(
I + K[N]

)
· ϕ = ψ where ϕ = z′′.

Compact operator K in a suitable Banach space of Chebyshev coefficients

K · ϕ = t

(
4−

3

1 + e cos t

)∫ t

−1

ϕ(s)ds−
(
4−

3

1 + e cos t

)∫ t

−1

sϕ(s)ds.

ψ(t) = c−
(
z(−1) + (t+ 1)z

′
(−1)

)(
4−

3

1 + e cos t

)
.

How to get an efficient final dimensional approximation?

28 / 38



Approximating our Example

Approximation of t 7→ 4−
3

1 + e cos t
over [−1, 1] (e = 0.5):

−1 11.5

2

α(t)

−1 11.5

2
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−1 11.5

2

α(t)
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1.82
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−1 11.5

2
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The Almost-Banded Structure of the Operator K - Example

K · ϕ = t

(
4−

3

1 + e cos t

)∫ t

t0

ϕ(s)ds+

(
−4 +

3

1 + e cos t

)∫ t

t0

sϕ(s)ds
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K · ϕ ≈ t(1.82− 0.18T2(t))

∫ t

t0

ϕ(s)ds+ (−1.82 + 0.18T2(t))

∫ t

t0

sϕ(s)ds
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β0(t)

∫ t

t0

ϕ(s)ds+ (−1.82 + 0.18T2(t))︸ ︷︷ ︸
β1(t)

∫ t
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sϕ(s)ds
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The Almost-Banded Structure of the Operator K

j = 0↓

i = 0

→

The infinite-dimensional operator K.
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The Almost-Banded Structure of the Operator K

j = 0↓

i = 0

→

The final-dimensional truncation K[N ].
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Reformulation as an integral operator

We want to solve z′′(t) +
(

4− 3
1+0.5 cos t

)
z(t) = c with z(−1) = 0, z′(−1) = 1 and

c = 1.

≈

Equivalent to
(
I + K

[N]

)
· ϕ = ψ where ϕ = z′′.

Compact operator K in a suitable Banach space of Chebyshev coefficients

K · ϕ = t

(
4−

3

1 + e cos t

)∫ t

−1

ϕ(s)ds−
(
4−

3

1 + e cos t

)∫ t

−1

sϕ(s)ds.

ψ(t) = c−
(
z(−1) + (t+ 1)z

′
(−1)

)(
4−

3

1 + e cos t

)
.

We have a matrix representation of I + K[N ].

ψ ≈ −0.82T0 − 1.73T1 + 0.18T2 + 0.09T3.

Inversion of the linear system in linear time via Olver & Townsend algorithm:

ϕ̃ = −0.6T0 − 1.19T1 + 0.62T2 + 0.17T3 − 0.05T4 − 0.01T5

+ 2.1 · 10−3
T6 + 3.2 · 10−3

T7 − 5.8 · 10−5
T8 − 7.6 · 10−6

T9 + 1.2 · 10−6
T10

+ 1.4 · 10−7
T11 − 1.9 · 10−8

T12 − 2.0 · 10−9
T13 + 2.6 · 10−10

T14 + 2.5 · 10−11
T15

− 3.0 · 10−12
T16 − 2.6 · 10−13

T17 + 3.0 · 10−14
T18 + 2.5 · 10−15

T19 − 2.6 · 10−16
T20
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General Ideas for Validation of Linear Problems

Recall: For the integral equation of unknown ϕ

(I + K) · ϕ = ψ,

we want to validate an approximate solution ϕ̃, in a suitable Banach space Ч1:

‖ϕ̃− ϕ∗‖Ч1 .

Reformulation as a fixed point equation:

ϕ+ K · ϕ = ψ ⇔ T · ϕ = ϕ,

T · ϕ = ϕ−A · (ϕ+ K · ϕ− ψ) , A ≈ (I + K)−1 injective.

If ‖DT‖Ч1 = ‖I−A (I + K)‖Ч1 = k < 1, T is contractive and we get a tight enclosure
of the approximation error:

‖T · ϕ̃− ϕ̃‖Ч1

1 + k
≤ ‖ϕ̃− ϕ∗‖Ч1 ≤

‖T · ϕ̃− ϕ̃‖Ч1

1− k
.
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Approximate Inverse for our Example

We are looking for an approximate inverse matrix:

A ≈ (I + K)−1.
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Computing the Operator Norm (1/2)

Decomposition of the operator norm:

‖I−A(I + K)‖Ч1 ≤ ‖I−A(I + K[N ])‖Ч1 + ‖A(K−K[N ])‖Ч1 .

Addition, Multiplication and 1-norm of almost-banded matrices: linear in N .

Hence, this certification step is linear in N .

Example

In our case, the approximation error is:

‖I−A
(
I + K[N ]

)
‖Ч1 ≤ 1.5 · 10−3
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Computing the Operator Norm (2/2)

‖I−A(I + K)‖Ч1 ≤ ‖I−A(I + K
[N]

)‖Ч1 + ‖A(K−K
[N]

)‖Ч1 .

K

Direct computation.

Apply A and direct computation.

Bound the remaining infinite number of
colums based on decrease like 1/i and
1/i2

Truncation error of the example

1.3 · 10−3 5.2 · 10−3 ⇒ 1.21 · 10−2
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Bring our Example to the End

k ≤ 1.5 · 10−3 + 1.21 · 10−2.

‖T · ϕ̃− ϕ̃‖Ч1 = ‖A(ϕ̃+ K · ϕ̃− ψ)‖Ч1 = 6.48 · 10−16.

Hence:

6.48 · 10−16

1 + k
≤ ‖ϕ̃− ϕ∗‖Ч1 ≤

6.48 · 10−16

1− k
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Bring our Example to the End

k ≤ 1.36 · 10−2.

‖T · ϕ̃− ϕ̃‖Ч1 = ‖A(ϕ̃+ K · ϕ̃− ψ)‖Ч1 = 6.48 · 10−16.

Hence:

6.39 · 10−16 ≤ ‖ϕ̃− ϕ∗‖Ч1 ≤ 6.57 · 10−16

37 / 38



Conclusion

Ask F. Bréhard for TchebyApprox: a C library to compute certified approximations to
solutions of Linear Ordinary Differential Equations, using truncated Chebyshev series &
Generalisation to Systems of LODEs
https://gforge.inria.fr/projects/tchebyapprox

D-finite functions provide a rich framework and structure

P-recursive sequences for other orthogonal basis expansions

38 / 38
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Even ducks are D-finite!
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D-finite functions

Prove that sec = 1
cos

is not D-finite

cos satisfy a 2nd order LODE: cos′′+ cos = 0  D-finite

Suppose y = sec is D-finite:

y′ = y
√
y2 − 1

y′′ = y3 + y2 − y

y(2i+1) = Ai(y)
√
y2 − 1 and y(2i) = Bi(y), with polynomial Ai and Bi of deg 2i+ 1

Substitute in L · y = ary(r) + ar−1y(r−1) + · · ·+ a0y = 0

 non-zero polynomial equation in x, y, and
√
y2 − 1 satisfied by y  y algebraic  

contradiction
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