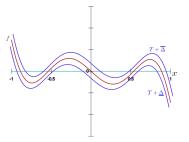
# Some validated symbolic-numeric approximation algorithms

M. Joldes sebarre, J.-M. Muller, J.-B. Lasserre, A. F

joint works with D. Arzelier, F. Bréhard, N. Brisebarre, J.-M. Muller, J.-B. Lasserre, A. Rondepierre, B. Salvy

LAAS-CNRS, Toulouse, France



Winter Workshop on Dynamics, Topology and Computations, BEDLEWO, Poland

January 28 - February 3, 2018

- Numerical Computing: floating-point arithmetic
  - → High Performance Computing (MultiCores, GPUs, FPGAs):
    - Fast numerical solutions: global optimization, systems of differential equations, integration
    - Usually, solutions lack certification of the output accuracy

- Numerical Computing: floating-point arithmetic
  - → High Performance Computing (MultiCores, GPUs, FPGAs):
    - Fast numerical solutions: global optimization, systems of differential equations, integration
    - Usually, solutions lack certification of the output accuracy

A catastrophic cancellation example:

Evaluate

$$(333.75 - a^2)b^6 + a^2(11a^2b^2 - 121b^4 - 2) + 5.5b^8 + \frac{a}{2b}$$

for a = 77617.0, b = 33096.0 (Rump '88)

Results of C program, gcc, Linux:

1.1726039400531787 in binary64;

1.1726039400531786318588349045201838 in binary128. Exact result is -0.827396...

- Numerical Computing: floating-point arithmetic
  - → High Performance Computing (MultiCores, GPUs, FPGAs):
    - Fast numerical solutions: global optimization, systems of differential equations, integration
    - Usually, solutions lack certification of the output accuracy

## A catastrophic cancellation example:

Evaluate

$$(333.75 - a^2)b^6 + a^2(11a^2b^2 - 121b^4 - 2) + 5.5b^8 + \frac{a}{2b}$$

for a = 77617.0, b = 33096.0 (Rump '88)

Results of C program, gcc, Linux:

1.1726039400531787 in binary64;

1.1726039400531786318588349045201838 in binary128. Exact result is -0.827396...

- → Computer Algebra Systems (eg. Maple):
  - Exact solution, e.g.  $-\frac{54767}{66192}$

- Numerical Computing: floating-point arithmetic
  - → High Performance Computing (MultiCores, GPUs, FPGAs):
    - Fast numerical solutions: global optimization, systems of differential equations, integration
      - Usually, solutions lack certification of the output accuracy

# A catastrophic cancellation example:

Evaluate

$$\underbrace{(333.75 - a^2)b^6 + a^2 \left(11a^2b^2 - 121b^4 - 2\right) + 5.5b^8}_{5.5b^8 - 2 - 5.5b^8 \sim \text{ eval to 0 by cancellation}} + \frac{a}{2b}$$

for a = 77617.0, b = 33096.0 (Rump '88)

Results of C program, gcc, Linux:

1.1726039400531787 in binary64;

1.1726039400531786318588349045201838 in binary128. Exact result is -0.827396...

- → Computer Algebra Systems (eg. Maple):
  - Exact solution, e.g.  $-\frac{54767}{66192}$

#### Constrained minimax polynomial approximation

Find  $c_2, c_3 \in \mathbb{Z}$  such that

$$\max_{-2^{-12} \leq x \leq 2^{-12}} \left| \exp x - \left( 1 + x + \frac{c_2}{2^{53}} x^2 + \frac{c_3}{2^{53}} x^3 \right) \right|$$

is minimal.

#### Constrained minimax polynomial approximation

Find  $c_2, c_3 \in \mathbb{Z}$  such that

$$\max_{-2^{-12} < x < 2^{-12}} \left| \exp x - \left( 1 + x + \frac{c_2}{2^{53}} x^2 + \frac{c_3}{2^{53}} x^3 \right) \right|$$

is minimal.

Best truncated polynomial:

$$p^{\star}(x) = 1 + x + \frac{4503599645901977}{2^{53}} x^2 + \frac{4503599645901977}{2^{52}} x^3$$

#### Constrained minimax polynomial approximation

Find  $c_2, c_3 \in \mathbb{Z}$  such that

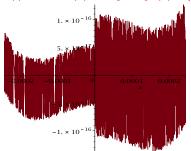
$$\max_{-2^{-12} \le x \le 2^{-12}} \left| \exp x - \left( 1 + x + \frac{c_2}{2^{53}} x^2 + \frac{c_3}{2^{53}} x^3 \right) \right|$$

is minimal.

Best truncated polynomial:

$$p^{\star}(x) = 1 + x + \frac{4503599645901977}{2^{53}}x^2 + \frac{4503599645901977}{2^{52}}x^3$$

Approx error  $\varepsilon(x) := \exp x - p^{\star}(x)$  is (with Maple, 16 digits) :



#### Constrained minimax polynomial approximation

Find  $c_2, c_3 \in \mathbb{Z}$  such that

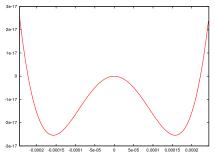
$$\max_{-2^{-12} \le x \le 2^{-12}} \left| \exp x - \left( 1 + x + \frac{c_2}{2^{53}} x^2 + \frac{c_3}{2^{53}} x^3 \right) \right|$$

is minimal.

Best truncated polynomial:

$$p^{\star}(x) = 1 + x + \frac{4503599645901977}{2^{53}} x^2 + \frac{4503599645901977}{2^{52}} x^3$$

Approx error  $\varepsilon(x) := \exp x - p^{\star}(x)$  is (with Sollya):



#### Constrained minimax polynomial approximation

Find  $c_2, c_3 \in \mathbb{Z}$  such that

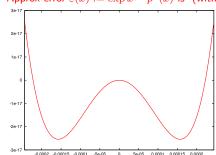
$$\max_{-2^{-12} \le x \le 2^{-12}} \left| \exp x - \left( 1 + x + \frac{c_2}{2^{53}} x^2 + \frac{c_3}{2^{53}} x^3 \right) \right|$$

is minimal.

Best truncated polynomial:

$$p^{\star}(x) = 1 + x + \frac{4503599645901977}{2^{53}} x^2 + \frac{4503599645901977}{2^{52}} x^3$$

Approx error  $\varepsilon(x) := \exp x - p^\star(x)$  is (with Sollya): Prove that:



$$\begin{aligned} ||\varepsilon||_{[-2^{-12};2^{-12}]} &:= \max_{-2^{-12} \le x \le 2^{-12}} |\varepsilon(x)| \\ &\le 2.58 \cdot 10^{-17} \end{aligned}$$

 $\simeq 54$  bits accuracy.

# Taylor series: $\exp = \sum \frac{1}{n!} x^n$

Recurrence for coefficients:

$$u(n+1) = \frac{u(n)}{n+1}$$

$$u(0) = 1$$

$$u(1) = 1$$

$$u(2) = 0.5$$

$$\vdots$$

$$u(50) \approx 3.28 \cdot 10^{-65}$$

$$1/50! \approx 3.28 \cdot 10^{-65}$$

# Taylor series: $\exp = \sum \frac{1}{n!} x^n$

Recurrence for coefficients:

$$u(n+1) = \frac{u(n)}{n+1}$$

$$u(0) = 1$$

$$u(1) = 1$$

$$u(2) = 0.5$$

$$\vdots$$

$$u(50) \approx 3.28 \cdot 10^{-65}$$

$$1/50! \approx 3.28 \cdot 10^{-65}$$

# Taylor series: $\exp = \sum \frac{1}{n!} x^n$

#### Recurrence for coefficients:

$$u(n+1) = \frac{u(n)}{n+1}$$

$$u(0) = 1$$

$$u(1) = 1$$

$$u(2) = 0.5$$

$$\vdots$$

$$u(50) \approx 3.28 \cdot 10^{-65}$$

$$1/50! \approx 3.28 \cdot 10^{-65}$$

# Chebyshev series: $\exp = \sum I_n(1)T_n(x)$

Recurrence for coefficients:  

$$u(n + 1) = -2nu(n) + u(n - 1)$$

$$u(n+1) = -2nu(n) + u(n-1)$$

$$u(0) = 1.266$$
  $I_0(1) \approx 1.266$   
 $u(1) = 0.565$   $I_1(1) \approx 0.565$ 

$$u(1) = 0.365$$
  $I_1(1) \approx 0.365$   $u(2) \approx 0.136$   $I_2(1) \approx 0.136$ 

# Taylor series: $\exp = \sum \frac{1}{n!} x^n$

#### Recurrence for coefficients:

$$u(n+1) = \frac{u(n)}{n+1}$$

$$u(0) = 1$$

$$u(1) = 1$$

$$u(1) = 1$$

$$1/0! = 1$$

$$1/1! = 1$$

$$1/2! = 0.5$$

$$u(50) \approx 3.28 \cdot 10^{-65} \quad 1/50! \approx 3.28 \cdot 10^{-65}$$

# Chebyshev series: $\exp = \sum I_n(1)T_n(x)$

Recurrence for coefficients:

$$u(n+1) = -2nu(n) + u(n-1)$$

$$u(0) = 1.266$$
  $I_0(1) \approx 1.266$ 

$$u(1) = 0.565$$
  $I_1(1) \approx 0.565$   
 $u(2) \approx 0.136$   $I_2(1) \approx 0.136$ 

$$u(50) \approx 4.450 \cdot 10^{67}$$
  $I_{50}(1) \approx 2.934 \cdot 10^{-80}$ 

# Taylor series: $\exp = \sum_{n} \frac{1}{n!} x^n$

#### Recurrence for coefficients:

$$u(n+1) = \frac{u(n)}{n+1}$$

$$u(0) = 1$$

$$u(1) = 1$$

$$u(2) = 0.5$$

$$\vdots$$

$$u(50) \approx 3.28 \cdot 10^{-65}$$

$$1/50! \approx 3.28 \cdot 10^{-65}$$

#### Chebyshev series: $\exp = \sum I_n(1)T_n(x)$

Recurrence for coefficients:

$$u(n+1) = -2nu(n) + u(n-1)$$

$$u(0) = 1.266$$
  $I_0(1) \approx 1.266$   
 $u(1) = 0.565$   $I_1(1) \approx 0.565$ 

$$u(1) = 0.365$$
  $I_1(1) \approx 0.365$   $u(2) \approx 0.136$   $I_2(1) \approx 0.136$ 

$$u(50) \approx 4.450 \cdot 10^{67} \quad I_{50}(1) \approx 2.934 \cdot 10^{-80}$$

#### More subtle cause:

Convergent and Divergent Solutions of the Recurrence u(n+1)=-2nu(n)+u(n-1): If u(n) is solution, then there exists another solution  $v(n)\sim \frac{1}{u(n)}$ 

# 3rd Case Study: Cancellation in finite precision power series evaluation

Example: 
$$\exp(-x) = \sum_{i=0}^{\infty} \frac{(-1)^i x^i}{i!}$$

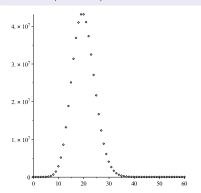
$$\exp(-20) = 1 - 20 \dots + 1.66 \cdot 10^7 - 1.23 \cdot 10^7 + \dots + 1.19 \cdot 10^{-8} - 3.45 \cdot 10^{-9} \dots$$

# 3rd Case Study: Cancellation in finite precision power series evaluation

Example: 
$$\exp(-x) = \sum\limits_{i=0}^{\infty} \dfrac{(-1)^i x^i}{i!}$$

$$\exp(-20) = 1 - 20 \dots + 1.66 \cdot 10^7 - 1.23 \cdot 10^7 + \dots + 1.19 \cdot 10^{-8} - 3.45 \cdot 10^{-9} \dots$$

Values of  $\left|\frac{(-1)^i 20^i}{i!}\right|$ , compared to  $\exp(-20) \simeq 2.06 \cdot 10^{-9}$ :

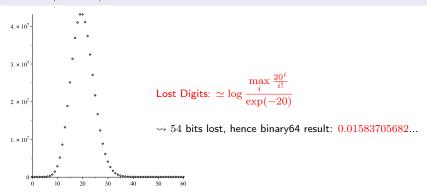


# 3rd Case Study: Cancellation in finite precision power series evaluation

Example: 
$$\exp(-x) = \sum_{i=0}^{\infty} \frac{(-1)^i x^i}{i!}$$

$$\exp(-20) = 1 - 20 \dots + 1.66 \cdot 10^7 - 1.23 \cdot 10^7 + \dots + 1.19 \cdot 10^{-8} - 3.45 \cdot 10^{-9} \dots$$

Values of  $\left|\frac{(-1)^i 20^i}{i!}\right|$ , compared to  $\exp(-20) \simeq 2.06 \cdot 10^{-9}$ :



# Safety-critical space applications

 2009, Feb. 10: collision between Iridium 33 and Cosmos 2251, although predicted minimum distance of close approach was of 584m.



Figure: Animation of Iridium 33 and Kosmos 2251's collision; GNU Free Documentation, Wikipedia

Collision probabilities estimated by reliable and efficient integral computations...

# Safety-critical space applications

 2009, Feb. 10: collision between Iridium 33 and Cosmos 2251, although predicted minimum distance of close approach was of 584m.



Figure: Animation of Iridium 33 and Kosmos 2251's collision; GNU Free Documentation, Wikipedia

Collision probabilities estimated by reliable and efficient integral computations...

# Safety-critical space applications

 2009, Feb. 10: collision between Iridium 33 and Cosmos 2251, although predicted minimum distance of close approach was of 584m.



Figure: Animation of Iridium 33 and Kosmos 2251's collision; GNU Free Documentation, Wikipedia

Collision probabilities estimated by reliable and efficient integral computations...

# Computational methods (ultimate efficiency required) are a basic building brick



(courtesy 9gag.com)

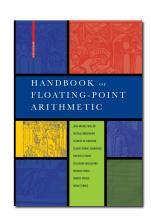
A real number is approximated in machine by a rational x:

$$x = (-1)^s \times m \times \beta^e$$

- $\beta$  is the radix (usually  $\beta = 2$ )
- ullet s is a sign bit
- m is the mantissa, a rational number of  $n_m$  digits in radix  $\beta$ :

$$m = d_0, d_1 d_2 ... d_{n_m - 1}$$

ullet e is the exponent, a signed integer on  $n_e$  bits



## IEEE 754-2008 standard

#### Most common formats

• Single (binary32) precision format (p = 24):

| 1 | 8 | 23 |
|---|---|----|
| s | e | m  |

• Double (binary64) precision format (p = 53):

→ Implicit bit that is not stored.

#### IEEE 754-2008 standard

#### Most common formats

• Single (binary32) precision format (p = 24):

| 1 | 8 | 23 |
|---|---|----|
| S | e | m  |

• Double (binary64) precision format (p = 53):

| 1 | 11 | 52 |
|---|----|----|
| s | e  | m  |

→ Implicit bit that is not stored.

#### Rounding modes

- 4 rounding modes: RD, RU, RZ, RN
- Correct rounding for:  $+, -, \times, \div, \sqrt{\text{(return what we would get by infinitely precise operations followed by rounding)}}$ .
- Portability, determinism.

# Multiple vs. standard precision

Standard precision  $\leadsto$  hardware  $\leadsto$  fast Multiple precision  $\leadsto$  software  $\leadsto$  100x slower (typically)

# Multiple vs. standard precision

Standard precision → hardware → fast Multiple precision → software → 100x slower (typically)

#### Two ways of representing numbers in extended precision

 multiple-digit representation - a number is represented by a sequence of digits coupled with a single exponent (Ex. GNU MPFR, ARPREC);

 $rac{s}{\sqrt{\chi}/\sqrt{M}} rac{e}{\sqrt{M}}$ 

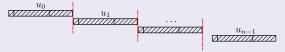
# Multiple vs. standard precision

```
Standard precision \leadsto hardware \leadsto fast Multiple precision \leadsto software \leadsto 100x slower (typically)
```

#### Two ways of representing numbers in extended precision

 multiple-digit representation - a number is represented by a sequence of digits coupled with a single exponent (Ex. GNU MPFR, ARPREC);

 multiple-term representation - a number is expressed as the unevaluated sum of several FP numbers (also called a FP expansion) (Ex. QD, CAMPARY).



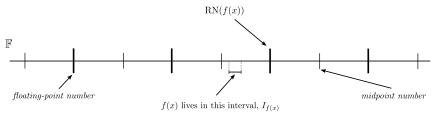
#### Example: $\pi$ in double-double

and

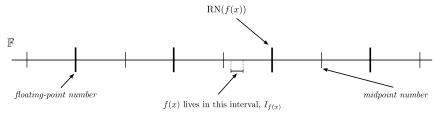
 $p_0 + p_1 \leftrightarrow 107$  bits FP approx.

✓ Since 1985, IEEE-754 standard for FP arithmetic requests correct rounding for :  $+,-,\times,\div,\sqrt{}$ .

- ✓ Since 1985, IEEE-754 standard for FP arithmetic requests correct rounding for :  $+,-,\times,\div,\sqrt{.}$
- √ Correct Rounding: An operation whose entries are FP
  numbers must return what we would get by infinitely precise operation followed by rounding.

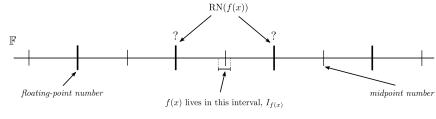


- ✓ Since 1985, IEEE-754 standard for FP arithmetic requests correct rounding for :  $+, -, \times, \div, \checkmark$ .
- √ Correct Rounding: An operation whose entries are FP
  numbers must return what we would get by infinitely precise operation followed by rounding.



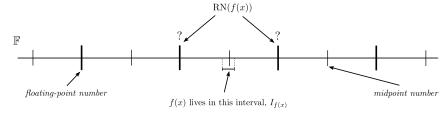
What about standard functions (sin, cos, log, etc.)?

- ✓ Since 1985, IEEE-754 standard for FP arithmetic requests correct rounding for :  $+, -, \times, \div, \checkmark$ .
- √ Correct Rounding: An operation whose entries are FP
  numbers must return what we would get by infinitely precise operation followed by rounding.



- What about standard functions (sin, cos, log, etc.)?
  - Most Mathematical Libraries (libms) do not provide correctly rounded functions, although IEEE-754-2008 recommends it.

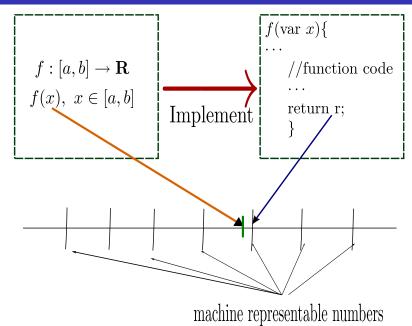
- ✓ Since 1985, IEEE-754 standard for FP arithmetic requests correct rounding for :  $+,-,\times,\div,\surd$ .
- Correct Rounding: An operation whose entries are FP numbers must return what we would get by infinitely precise operation followed by rounding.



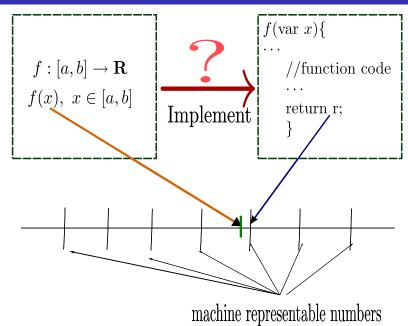
- What about standard functions (sin, cos, log, etc.)?
  - Most Mathematical Libraries (libms) do not provide correctly rounded functions, although IEEE-754-2008 recommends it.
- Correctly Rounded Libm (CRLibm\*) was developed by the Arénaire/AriC team, Lyon, France.

<sup>\*</sup>https://gforge.inria.fr/scm/browser.php?group\_id=5929&extra=crlibm

# Correctly rounded functions



# Correctly rounded functions



# Sollya

- Tool & library for safe floating-point code development
- Targeted for automatized implementation of libms
- http://sollya.gforge.inria.fr/
- Developed by C. Lauter and S. Chevillard, M.J., N. Jourdan

Used for demos in this course.

 $\exp, \ln, \cos, \sin, \arctan, \sqrt{\ }, \dots$ 

 $\exp, \ln, \cos, \sin, \arctan, \sqrt{\ }, \dots$ 

Goal: evaluation of  $\varphi$  to a given accuracy  $\eta$ .

• Step 1. Argument reduction (Payne & Hanek, Ng, Tang, etc.):  $x \in \mathbb{R}, \ \varphi(x) \simeq f(y), \ y \in [a,b].$ 

#### Example

$$e^{x} = 2^{\frac{x}{\ln 2}} = 2^{\lceil \frac{x}{\ln 2} \rfloor} \cdot 2^{\frac{x}{\ln 2} - \lceil \frac{x}{\ln 2} \rfloor} = 2^{E} \cdot e^{x - E \ln(2)} = 2^{E} \cdot e^{r}, \ |r| \le \ln 2.$$

$$= \dots$$

$$= 2^{M + E} \cdot t_1 \cdot t_2 \cdot e^{y}, |y| \le 2^{-\ell}.$$

• Step 2. Computation of  $p^*$ , a "machine-efficient" polynomial approximation of f (AriC, implementation in Sollya)\*.

#### Example

Find  $c_2, c_3 \in \mathbb{Z}$  such that

$$\max_{-2^{-12} \leq x \leq 2^{-12}} \left| \exp x - \left( 1 + x + \frac{c_2}{2^{53}} x^2 + \frac{c_3}{2^{53}} x^3 \right) \right|$$

is minimal.

<sup>\*</sup>S. Chevillard, N. Brisebarre, A. Tisserand, S. Torres

Step 2. Computation of p\*, a "machine-efficient" polynomial approximation of f (AriC, implementation in Sollya)\*.

#### Example

Find  $c_2, c_3 \in \mathbb{Z}$  such that

$$\max_{-2^{-12} \leq x \leq 2^{-12}} \left| \exp x - \left( 1 + x + \frac{c_2}{2^{53}} x^2 + \frac{c_3}{2^{53}} x^3 \right) \right|$$

is minimal.

[fpminimax Sollya routine, BrisebarreChevillard2007] <->

$$p^*(x) = 1 + x + \frac{4503599645901977}{2^{53}} x^2 + \frac{4503599645901977}{2^{52}} x^3$$

<sup>\*</sup>S. Chevillard, N. Brisebarre, A. Tisserand, S. Torres

• Step 3. Computation of a rigorous approximation error bound  $||f - p^*(x)||^*$ 

# Example

Prove that:

$$\begin{split} ||\varepsilon||_{[-2^{-12};2^{-12}]} &:= \max_{-2^{-12} \leq x \leq 2^{-12}} |\varepsilon(x)| \\ &\leq 2.58 \cdot 10^{-17} \end{split}$$

<sup>\*</sup>Sollya (S. Chevillard, M. Joldes, C. Lauter)

 $\exp, \ln, \cos, \sin, \arctan, \sqrt{\ }, \dots$ 

- Step 1. Argument reduction (Payne & Hanek, Ng, Tang, etc.):  $x \in \mathbb{R}, \ \varphi(x) \simeq f(y), \ y \in [a,b].$
- Step 2. Computation of  $p^*$ , a "machine-efficient" polynomial approximation of f (AriC, implementation in Sollya).\*
- Step 3. Computation of a rigorous approximation error  $||f p^*||$ . †

<sup>\*</sup>S. Chevillard, N. Brisebarre, A. Tisserand, S. Torres

<sup>&</sup>lt;sup>†</sup>Sollya (S. Chevillard, M. Joldes, C. Lauter)

```
\exp, \ln, \cos, \sin, \arctan, \sqrt{\ }, \dots
```

- Step 1. Argument reduction (Payne & Hanek, Ng, Tang, etc.):  $x \in \mathbb{R}, \ \varphi(x) \simeq f(y), \ y \in [a, b].$
- Step 2. Computation of  $p^*$ , a "machine-efficient" polynomial approximation of f (AriC, implementation in Sollya).\*
- Step 3. Computation of a rigorous approximation error  $||f p^*||.^{\dagger}$ .
- Step 4. Computation of a certified evaluation error of  $p^*$ : GAPPA (G. Melquiond).

<sup>\*</sup>S. Chevillard, N. Brisebarre, A. Tisserand, S. Torres

<sup>&</sup>lt;sup>†</sup>Sollya (S. Chevillard, M. Joldes, C. Lauter)

```
\exp, \ln, \cos, \sin, \arctan, \sqrt{\ }, \dots
```

- Step 0. Computation of hardest-to-round cases (binary32 done, binary64 ongoing projects, AriC).
- Step 1. Argument reduction (Payne & Hanek, Ng, Tang, etc.):  $x \in \mathbb{R}, \ \varphi(x) \simeq f(y), \ y \in [a,b].$
- Step 2. Computation of  $p^*$ , a "machine-efficient" polynomial approximation of f (AriC, implementation in Sollya).\*
- Step 3. Computation of a rigorous approximation error  $||f p^*||$ . †
- Step 4. Computation of a certified evaluation error of  $p^*$ : GAPPA (G. Melquiond).

<sup>\*</sup>S. Chevillard, N. Brisebarre, A. Tisserand, S. Torres

<sup>&</sup>lt;sup>†</sup>Sollya (S. Chevillard, M. Joldes, C. Lauter)

Framework of function evaluation, two norms over C([a,b]):

•  $L^2$  norm: given a nonnegative weight function  $w \in \mathcal{C}([a,b]), \, \mathrm{d}x$  denotes the Lebesgue measure:

$$g \in L^2([a,b], w, \mathrm{d}x)$$

if

$$\int_{a}^{b} w(x)|g(x)|^{2} \mathrm{d}x < \infty,$$

then define

$$||g||_{2,w} = \sqrt{\int_a^b w(x)|g(x)|^2 dx};$$

Framework of function evaluation, two norms over C([a,b]):

•  $L^2$  norm: given a nonnegative weight function  $w \in \mathcal{C}([a,b]), \, \mathrm{d}x$  denotes the Lebesgue measure:

$$g \in L^2([a,b], w, \mathrm{d}x)$$

if

$$\int_{a}^{b} w(x)|g(x)|^{2} \mathrm{d}x < \infty,$$

then define

$$||g||_{2,w} = \sqrt{\int_a^b w(x)|g(x)|^2 dx};$$

•  $L^{\infty}$  norm (aka Chebyshev, supremum norm): if g is bounded on [a,b]:

$$||g||_{\infty} = \sup_{x \in [a,b]} |g(x)|,$$

(for continuous g,  $||g||_{\infty} = \max_{x \in [a,b]} |g(x)|$ ).

Denote  $\mathbb{R}_n[X] = \{ p \in \mathbb{R}[X]; \deg p \leq n \}.$ 

#### Problem

Given  $f \in \mathcal{C}([a,b])$ ,  $n \in \mathbb{N}$ , find  $p \in \mathbb{R}_n[X]$  s.t.

$$||\mathbf{p} - \mathbf{f}|| = \inf_{q \in \mathbb{R}_n[X]} ||q - \mathbf{f}||.$$

Denote  $\mathbb{R}_n[X] = \{ p \in \mathbb{R}[X]; \deg p \leq n \}.$ 

#### Problem

Given  $f \in \mathcal{C}([a,b])$ ,  $n \in \mathbb{N}$ , find  $p \in \mathbb{R}_n[X]$  s.t.

$$||\mathbf{p} - \mathbf{f}|| = \inf_{q \in \mathbb{R}_n[X]} ||q - \mathbf{f}||.$$

ullet  $\mathcal{C}([a,b])\subset L^2([a,b],w,\mathrm{d}x)$ , which is a complete Hilbert space with  $\|\cdot\|_2$  and

$$\langle f, g \rangle = \int_a^b f(x)g(x)w(x)\mathrm{d}x,$$

Hence,  $p := \operatorname{pr}^{\perp}(f)$  onto  $\mathbb{R}_n[x]$ .

Denote  $\mathbb{R}_n[X] = \{ p \in \mathbb{R}[X]; \deg p \leq n \}.$ 

#### Problem

Given  $f \in \mathcal{C}([a,b])$ ,  $n \in \mathbb{N}$ , find  $p \in \mathbb{R}_n[X]$  s.t.

$$||p-f||=\inf_{q\in\mathbb{R}_n[X]}||q-f||.$$

•  $\mathcal{C}([a,b]) \subset L^2([a,b],w,\mathrm{d}x)$ , which is a complete Hilbert space with  $\|\cdot\|_2$  and

$$\langle f, g \rangle = \int_a^b f(x)g(x)w(x)\mathrm{d}x,$$

Hence,  $p := \operatorname{pr}^{\perp}(f)$  onto  $\mathbb{R}_n[x]$ .

• Weierstraß Thm. (1885) Polynomials are dense in  $(\mathcal{C}([a,b]),\|\cdot\|_{\infty})$ 

$$\inf_{q \in \mathbb{R}_n[x]} \|q - f\|_{\infty} \to 0 \text{ as } n \to \infty.$$

Denote  $\mathbb{R}_n[X] = \{ p \in \mathbb{R}[X]; \deg p \leq n \}.$ 

#### Problem

Given  $f \in \mathcal{C}([a,b])$ ,  $n \in \mathbb{N}$ , find  $p \in \mathbb{R}_n[X]$  s.t.

$$||\mathbf{p} - \mathbf{f}|| = \inf_{q \in \mathbb{R}_n[X]} ||q - \mathbf{f}||.$$

•  $\mathcal{C}([a,b]) \subset L^2([a,b],w,\mathrm{d}x)$ , which is a complete Hilbert space with  $\|\cdot\|_2$  and

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x)w(x)dx,$$

Hence,  $p := \operatorname{pr}^{\perp}(f)$  onto  $\mathbb{R}_n[x]$ .

• Weierstraß Thm. (1885) Polynomials are dense in  $(\mathcal{C}([a,b]),\|\cdot\|_{\infty})$ 

$$\inf_{q \in \mathbb{R}_n[x]} \|q - f\|_{\infty} \to 0 \text{ as } n \to \infty.$$

The infimum is reached:

Let  $(E,\|\cdot\|)$  be a normed  $\mathbb{R}$ -vector space, let F be a finite dimensional subspace of  $(E,\|\cdot\|)$ . For all  $f\in E$ , there exists  $p\in F$  such that  $\|p-f\|=\min_{q\in F}\|q-f\|$ . Moreover, the set of best approximations to a given  $f\in E$  is convex.

The best  $L^2$  approximation is unique, which is not always the case in the  $L^\infty$  setting.

#### Example

Consider the interval [-1,1], f be the constant function 1 and  $F=\mathbb{R}g$  where  $g:x\to x^2$ . Determine the set of best  $L^\infty$  approximations to f.

Note that

$$\min_{c\in\mathbb{R}}\max_{x\in[-1,1]}|1-cx^2|\geq 1,$$

attained for all  $c \in [0, 2]$ .

In the case of  $L^{\infty},$  it is necessary to introduce an additional condition known as the Haar condition.

#### Haar Condition

Consider n+1 functions  $\varphi_0,\ldots,\varphi_n$  defined over [a,b]. We say that  $\varphi_0,\ldots,\varphi_n$  satisfy the Haar condition iff

- $\bullet$   $\varphi_i$  are continuous;
- 2 and the following equivalent statements hold:
  - $(\varphi_i)$  are  $\mathbb{R}$ -linearly independent and any  $p=\sum_{k=0}^n \alpha_k \varphi_k \neq 0$  has at most n distinct zeros in [a,b].
  - for all  $x_0, x_1, \ldots, x_n \in [a, b]$ ,

$$\begin{array}{cccc} \varphi_0(x_0) & \cdots & \varphi_n(x_0) \\ \vdots & & \vdots \\ \varphi_0(x_n) & \cdots & \varphi_n(x_n) \end{array} \bigg| = 0 \quad \Leftrightarrow \quad \exists i \neq j, x_i = x_j;$$

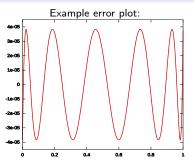
A set of functions that satisfy the Haar condition is called a Chebyshev system. The prototype example is  $\varphi_i(x)=x^i$ , for which we have

$$\begin{vmatrix} \varphi_0(x_0) & \cdots & \varphi_n(x_0) \\ \vdots & & \vdots \\ \varphi_0(x_n) & \cdots & \varphi_n(x_n) \end{vmatrix} = \begin{vmatrix} 1 & \cdots & x_0^n \\ \vdots & & \vdots \\ 1 & \cdots & x_n^n \end{vmatrix} = V_n = \prod_{0 \le i < j \le n} (x_j - x_i).$$

#### Alternation Theorem. Kirchberger (1902)

Let  $\{\varphi_0,\ldots,\varphi_n\}$  be a Chebyshev system over [a,b]. Let  $f\in \mathcal{C}([a,b])$ . A generalized polynomial  $p=\sum_{k=0}^n\alpha_k\varphi_k$  is the best approximation to f iff there exist n+2 points  $a\leqslant x_0< x_1<\cdots< x_{n+1}\leqslant b$  such that, for all k,

$$f(x_k) - p(x_k) = (-1)^k (f(x_0) - p(x_0)) = \pm ||f - p||_{\infty}.$$

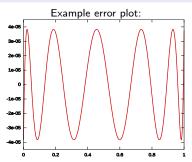


best approximation  $p\Leftrightarrow \operatorname{error} f-p$  has at least n+2 extrema, all global and with alternating signs.

#### Alternation Theorem. Kirchberger (1902)

Let  $\{\varphi_0,\ldots,\varphi_n\}$  be a Chebyshev system over [a,b]. Let  $f\in\mathcal{C}([a,b])$ . A generalized polynomial  $p=\sum_{k=0}^n\alpha_k\varphi_k$  is the best approximation to f iff there exist n+2 points  $a\leqslant x_0< x_1<\cdots< x_{n+1}\leqslant b$  such that, for all k,

$$f(x_k) - p(x_k) = (-1)^k (f(x_0) - p(x_0)) = \pm ||f - p||_{\infty}.$$



best approximation  $p\Leftrightarrow \operatorname{error} f-p$  has at least n+2 extrema, all global and with alternating signs.

## Remez algorithm

#### Algorithm

*Input*: An interval [a,b], a function  $f\in\mathcal{C}([a,b])$ , a natural integer n, a Chebyshev system  $\{\varphi_k\}_{0\leqslant k\leqslant n}$ , a tolerance  $\Delta$ .

*Output*: An approx of degree n-minimax polynomial of f on the system  $\{\varphi_k\}_{0\leq k\leq n}$ .

- Choose n+2 points  $x_0 < x_1 < \cdots < x_{n+1}$  in [a,b],  $\delta \leftarrow 1, \varepsilon \leftarrow 0$ .
- WHILE  $\delta \geqslant \Delta |\varepsilon|$ 
  - ullet Determine the solutions  $a_0,\ldots,a_n$  and arepsilon of the linear system

$$\sum_{k=0}^{n} a_k \varphi_k(x_j) - f(x_j) = (-1)^j \varepsilon, \ j = 0, \dots, n+1.$$

• Choose  $x_{\text{new}} \in [a, b]$  such that

$$||p - f||_{\infty} = |p(x_{\text{new}}) - f(x_{\text{new}})|, \text{ with } p = \sum_{k=0}^{n} a_k \varphi_k.$$

- Replace one of the  $x_i$  with  $x_{\mathrm{new}}$ , in such a way that the sign of p-f alternates at the points of the resulting discretization  $x_{0,\mathrm{new}},\ldots,x_{n+1,\mathrm{new}}$ .
- $\delta \leftarrow |p(x_{\text{new}}) f(x_{\text{new}})| |\varepsilon|$ .
- Return p.



Keep calm and (don't) read, a step-by-step demo follows!

Standard Functions Implementation  $\leadsto$  Coefficients encoded on finite (constrained) format.

Standard Functions Implementation  $\leadsto$  Coefficients encoded on finite (constrained) format.

Let  $m = (m_i)_{0 \le i \le n}$  a finite sequence of rational integers. Let

$$\mathcal{P}_n^m = \{q = q_0 + q_1x + \dots + q_nx^n \in \mathbb{R}_n[X]; q_i \text{ integer multiple of } 2^{-m_i}, \forall i\}.$$

Standard Functions Implementation --- Coefficients encoded on finite (constrained) format.

Let  $m = (m_i)_{0 \le i \le n}$  a finite sequence of rational integers. Let

$$\mathcal{P}_n^m = \{q = q_0 + q_1x + \dots + q_nx^n \in \mathbb{R}_n[X]; q_i \text{ integer multiple of } 2^{-m_i}, \forall i\}.$$

Question: find  $p^* \in \mathcal{P}_n^m$  which minimizes ||f - q||,  $q \in \mathcal{P}_n^m$ .

Standard Functions Implementation --- Coefficients encoded on finite (constrained) format.

Let  $m = (m_i)_{0 \le i \le n}$  a finite sequence of rational integers. Let

$$\mathcal{P}_n^m = \{q = q_0 + q_1x + \dots + q_nx^n \in \mathbb{R}_n[X]; q_i \text{ integer multiple of } 2^{-m_i}, \forall i\}.$$

Question: find  $p^{\star} \in \mathcal{P}_n^m$  which minimizes ||f - q||,  $q \in \mathcal{P}_n^m$ .

First idea. Remez  $\to p(x)=p_0+p_1x+\cdots+p_nx^n$ . Every  $p_i$  rounded to  $\hat{a}_i/2^{m_i}$ , the nearest integer multiple of  $2^{-m_i}\to \hat{p}(x)=\frac{\hat{a}_0}{2^{m_0}}+\frac{\hat{a}_1}{2^{m_1}}x+\cdots+\frac{\hat{a}_n}{2^{m_n}}x^n$ .

Standard Functions Implementation -- Coefficients encoded on finite (constrained) format.

Let  $m = (m_i)_{0 \le i \le n}$  a finite sequence of rational integers. Let

$$\mathcal{P}_n^m = \{q = q_0 + q_1x + \dots + q_nx^n \in \mathbb{R}_n[X]; q_i \text{ integer multiple of } 2^{-m_i}, \forall i\}.$$

Question: find  $p^* \in \mathcal{P}_n^m$  which minimizes ||f - q||,  $q \in \mathcal{P}_n^m$ .

First idea. Remez  $\to p(x)=p_0+p_1x+\cdots+p_nx^n$ . Every  $p_i$  rounded to  $\hat{a}_i/2^{m_i}$ , the nearest integer multiple of  $2^{-m_i}\to \hat{p}(x)=\frac{\hat{a}_0}{2^{m_0}}+\frac{\hat{a}_1}{2^{m_1}}x+\cdots+\frac{\hat{a}_n}{2^{m_n}}x^n$ .

Problem:  $\hat{p}$  not necessarily a minimax approx. of f among the polynomials of  $\mathcal{P}_n^m$ .

Maple or Sollya tell us that the polynomial

$$p = 0.9998864206 + 0.00469021603x - 0.5303088665x^2 + 0.06304636099x^3$$

is  $\sim$  the best approximant to  $\cos$ . We have  $\varepsilon = ||\cos -p||_{[0,\pi/4]} = 0.0001135879...$ 

We look for  $a_0, a_1, a_2, a_3 \in \mathbb{Z}$  such that

$$\max_{0 \le x \le \pi/4} \left| \cos x - \left( \frac{a_0}{2^{12}} + \frac{a_1}{2^{10}} x + \frac{a_2}{2^6} x^2 + \frac{a_3}{2^4} x^3 \right) \right|$$

is minimal.

Maple or Sollya tell us that the polynomial

$$p = 0.9998864206 + 0.00469021603x - 0.5303088665x^{2} + 0.06304636099x^{3}$$

is  $\sim$  the best approximant to  $\cos$ . We have  $\varepsilon = ||\cos -p||_{[0,\pi/4]} = 0.0001135879...$ 

We look for  $a_0, a_1, a_2, a_3 \in \mathbb{Z}$  such that

$$\max_{0 \le x \le \pi/4} \left| \cos x - \left( \frac{a_0}{2^{12}} + \frac{a_1}{2^{10}} x + \frac{a_2}{2^6} x^2 + \frac{a_3}{2^4} x^3 \right) \right|$$

is minimal.

The naive approach gives the polynomial

$$\hat{p} = \frac{2^{12}}{2^{12}} + \frac{5}{2^{10}}x - \frac{34}{2^6}x^2 + \frac{1}{2^4}x^3.$$

We have  $\hat{\varepsilon} = ||\cos -\hat{p}||_{[0,\pi/4]} = 0.00069397....$ 

# Approximation of the Function $\cos$ over $[0, \pi/4]$ by a Degree-3 Polynomial

Maple or Sollya computes a polynomial p which is  $\sim$  the best approximant to  $\cos$ . We have  $\varepsilon = ||\cos -p||_{[0,\pi/4]} = 0.0001135879...$ 

We look for  $a_0, a_1, a_2, a_3 \in \mathbb{Z}$  such that

$$\max_{0 \leq x \leq \pi/4} \left| \cos x - \left( \frac{a_0}{2^{12}} + \frac{a_1}{2^{10}} x + \frac{a_2}{2^6} x^2 + \frac{a_3}{2^4} x^3 \right) \right|$$

is minimal.

The naive approach gives the polynomial  $\hat{p}$  and  $\hat{\varepsilon} = ||\cos -\hat{p}||_{[0,\pi/4]} = 0.00069397...$ 

Maple or Sollya computes a polynomial p which is  $\sim$  the best approximant to  $\cos$ . We have  $\varepsilon = ||\cos - p||_{[0,\pi/4]} = 0.0001135879...$ 

We look for  $a_0, a_1, a_2, a_3 \in \mathbb{Z}$  such that

$$\max_{0 \leq x \leq \pi/4} \left| \cos x - \left( \frac{a_0}{2^{12}} + \frac{a_1}{2^{10}} x + \frac{a_2}{2^6} x^2 + \frac{a_3}{2^4} x^3 \right) \right|$$

is minimal.

The naive approach gives the polynomial  $\hat{p}$  and  $\hat{\varepsilon} = ||\cos -\hat{p}||_{[0,\pi/4]} = 0.00069397...$  But the best "truncated" approximant:

$$p^{\star} = \frac{4095}{2^{12}} + \frac{6}{2^{10}} x - \frac{34}{2^6} x^2 + \frac{1}{2^4} x^3$$

which gives  $||\cos -p^*||_{[0,\pi/4]} = 0.0002441406250$ .

In this example, we gain  $-\log_2(0.35) \approx 1.5$  bits of accuracy.

# Approaches for best "truncated" approximants

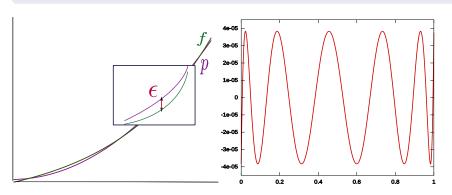
- Linear programming: tackle degree-8 or 10 polynomials: good for hardware-oriented applications, not satisfying for software-oriented.
- Lattice Basis Reduction: much faster and more efficient, gives a very good approximant (e.g. provides practical gains of 16 bits in double precision implementation of arcsin function).
- Works of N. Brisebarre, S. Chevillard, A. Tisserand, S. Torres.
- Nice implementation in Sollya

- Step 0. Computation of hardest-to-round cases.
- Step 1. Argument reduction  $\leadsto f(y)$ ,  $y \in [a, b]$ .
- ullet Step 2. Computation of p, a "machine-efficient" polynomial approximation of f.
- ullet Step 3. Computation of a rigorous approximation error bound  $||f-p||_{\infty}$

• Step 3. Computation of a rigorous approximation error bound  $||f-p||_{\infty}$ 

#### Example

$$f(x)=e^{1/\cos(x)},\ x\in[0,1],\ p(x)=\sum_{i=0}^{10}c_ix^i,\ \varepsilon(x)=f(x)-p(x)$$
 s.t.  $\|\varepsilon\|_\infty=\sup_{x\in[a,\,b]}\{|\varepsilon(x)|\}$  is as small as possible (Remez algorithm)



#### 1. Interval arithmetic (IA)

 Each interval = pair of floating-point numbers (multiple precision IA libraries exist, e.g. MPFI\*)

<sup>\*</sup>http://gforge.inria.fr/projects/mpfi/

#### 1. Interval arithmetic (IA)

- Each interval = pair of floating-point numbers (multiple precision IA libraries exist, e.g. MPFI\*)
- $\bullet \ \pi \in [3.1415, 3.1416]$

<sup>\*</sup>http://gforge.inria.fr/projects/mpfi/

## 1. Interval arithmetic (IA)

- Each interval = pair of floating-point numbers (multiple precision IA libraries exist, e.g. MPFI\*)
- $\pi \in [3.1415, 3.1416]$
- Interval Arithmetic Operations

Eg. 
$$[1,2] + [-3,2] = [-2,4]$$

<sup>\*</sup>http://gforge.inria.fr/projects/mpfi/

#### 1. Interval arithmetic (IA)

- Each interval = pair of floating-point numbers (multiple precision IA libraries exist, e.g. MPFI\*)
- $\bullet$   $\pi \in [3.1415, 3.1416]$
- Interval Arithmetic Operations Eg. [1, 2] + [-3, 2] = [-2, 4]
- Range bounding for functions

Eg. 
$$x \in [-1,2], f(x) = x^2 - x + 1$$
  
 $F(X) = X^2 - X + 1$   
 $F([-1,2]) = [-1,2]^2 - [-1,2] + [1,1]$   
 $F([-1,2]) = [0,4] - [-1,2] + [1,1]$   
 $F([-1,2]) = [-1,6]$ 

<sup>\*</sup>http://gforge.inria.fr/projects/mpfi/

### 1. Interval arithmetic (IA)

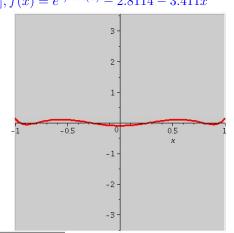
- Each interval = pair of floating-point numbers (multiple precision IA libraries exist, e.g. MPFI\*)
- $\bullet$   $\pi \in [3.1415, 3.1416]$
- Interval Arithmetic Operations Eg. [1, 2] + [-3, 2] = [-2, 4]
- Range bounding for functions

Eg. 
$$x \in [-1,2], f(x) = x^2 - x + 1$$
  
 $F(X) = X^2 - X + 1$   
 $F([-1,2]) = [-1,2]^2 - [-1,2] + [1,1]$   
 $F([-1,2]) = [0,4] - [-1,2] + [1,1]$   
 $F([-1,2]) = [-1,6]$   
 $x \in [-1,2], f(x) \in [-1,6], \text{ but } \text{Im}(f) = [3/4,3] \rightsquigarrow \text{Overestimation}$ 

<sup>\*</sup>http://gforge.inria.fr/projects/mpfi/

### 1. Interval arithmetic (IA)

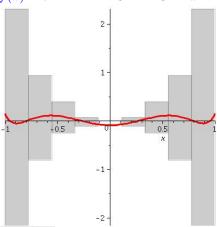
- Each interval = pair of floating-point numbers (multiple precision IA libraries exist, e.g. MPFI\*)
- $\bullet \ \pi \in [3.1415, 3.1416]$   $\bullet \ \ \text{Interval Arithmetic Operations}$
- Eg. [1,2] + [-3,2] = [-2,4]
- Range bounding for functions  $\rightarrow$  Overestimation Eg.  $x \in [-1,1], f(x) = e^{1/\cos(x)} 2.8114 3.411x^4$



### 1. Interval arithmetic (IA)

- Each interval = pair of floating-point numbers (multiple precision IA libraries exist, e.g. MPFI\*)
- $\pi \in [3.1415, 3.1416]$ • Interval Arithmetic Operations
- Eg. [1,2] + [-3,2] = [-2,4]
- Range bounding for functions → Overestimation

Eg.  $x \in [-1, 1], f(x) = e^{1/\cos(x)} - 2.8114 - 3.411x^4$ 



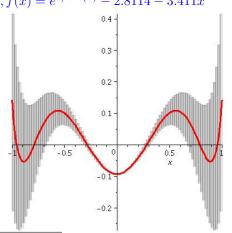
### 1. Interval arithmetic (IA)

- Each interval = pair of floating-point numbers (multiple precision IA libraries exist, e.g. MPFI\*)
- $\pi \in [3.1415, 3.1416]$
- Interval Arithmetic Operations Eg. [1,2] + [-3,2] = [-2,4]
- Range bounding for functions ightharpoonup Overestimation Eg.  $x \in [-1,1], f(x) = e^{1/\cos(x)} 2.8114 3.411x^4$

0.6 -0.4 0.2 --05 0.5 -0.2 -0.4

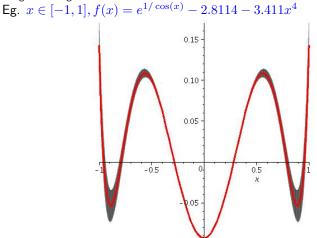
### 1. Interval arithmetic (IA)

- Each interval = pair of floating-point numbers (multiple precision IA libraries exist, e.g. MPFI\*)
- $\pi \in [3.1415, 3.1416]$
- Interval Arithmetic Operations Eg. [1,2] + [-3,2] = [-2,4]
- Range bounding for functions  $\rightarrow$  Overestimation Eg.  $x \in [-1, 1], f(x) = e^{1/\cos(x)} 2.8114 3.411x^4$



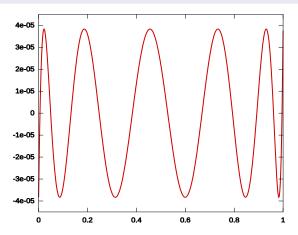
### 1. Interval arithmetic (IA)

- Each interval = pair of floating-point numbers (multiple precision IA libraries exist, e.g. MPFI\*)
- $\pi \in [3.1415, 3.1416]$ • Interval Arithmetic Operations
- Eg. [1,2] + [-3,2] = [-2,4]
- Range bounding for functions  $\rightarrow$  Overestimation



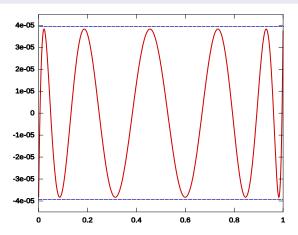
# When Interval Arithmetic does not suffice: Computing supremum norms of approximation errors

$$\begin{array}{l} f(x)=e^{1/\cos(x)}, \ x\in[0,1], \ p(x)=\sum_{i=0}^{10}c_ix^i, \ \varepsilon(x)=f(x)-p(x) \text{ s.t. } \\ \|\varepsilon\|_{\infty}=\sup_{x\in[a,\,b]}\{|\varepsilon(x)|\} \text{ is as small as possible (Remez algorithm)} \end{array}$$



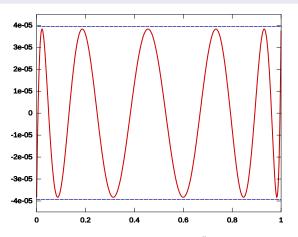
# When Interval Arithmetic does not suffice: Computing supremum norms of approximation errors

$$\begin{array}{l} f(x)=e^{1/\cos(x)}, \ x\in[0,1], \ p(x)=\sum_{i=0}^{10}c_ix^i, \ \varepsilon(x)=f(x)-p(x) \text{ s.t. } \\ \|\varepsilon\|_{\infty}=\sup_{x\in[a,\,b]}\{|\varepsilon(x)|\} \text{ is as small as possible (Remez algorithm)} \end{array}$$



# When Interval Arithmetic does not suffice: Computing supremum norms of approximation errors

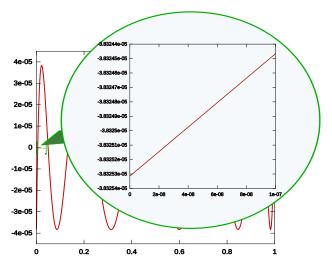
$$\begin{array}{l} f(x)=e^{1/\cos(x)},\;x\in[0,1],\;\;p(x)=\sum_{i=0}^{10}c_ix^i,\;\varepsilon(x)=f(x)-p(x)\;\text{s.t.}\\ \|\varepsilon\|_{\infty}=\sup_{x\in[a,\,b]}\{|\varepsilon(x)|\}\;\text{is as small as possible (Remez algorithm)} \end{array}$$



Using IA,  $\varepsilon(x) \in [-233,298]$ , but  $\left\|\varepsilon(x)\right\|_{\infty} \simeq 3.8325 \cdot 10^{-5}$ 

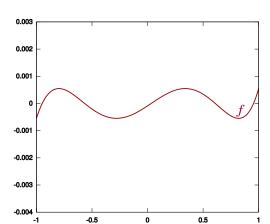
# Why IA does not suffice: Overestimation

Overestimation can be reduced by using intervals of smaller width.



In this case, over  $\left[0,1\right]$  we need  $10^7$  intervals!

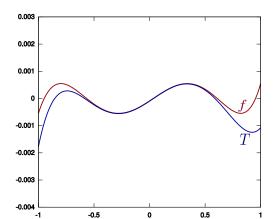
$$||f-p|| \le$$



$$||f - p|| \le \underbrace{||f - T||}_{\text{easier to compute}} + \underbrace{||T - p||}_{\text{reduced dependency}}$$

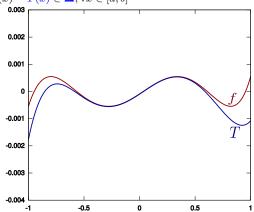
 $\boldsymbol{f}$  replaced with

- polynomial approximation  ${\it T}$ 



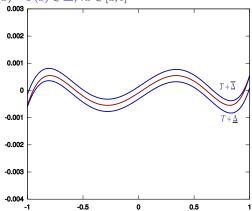
$$||f - p|| \le \underbrace{||f - T||}_{\text{easier to compute}} + \underbrace{||T - p||}_{\text{reduced dependency}}$$

- f replaced with
- polynomial approximation  ${\it T}$
- interval  $\Delta$  s. t.  $f(x) T(x) \in \Delta, \forall x \in [a, b]$



$$||f - p|| \le \underbrace{||f - T||}_{\text{easier to compute}} + \underbrace{||T - p||}_{\text{reduced dependency}}$$

- f replaced with a rigorous polynomial approximation :  $(T, \Delta)$
- polynomial approximation  ${\it T}$
- interval  $\Delta$  s. t.  $f(x) T(x) \in \Delta, \forall x \in [a, b]$



- Consider "sufficiently smooth" univariate functions  ${\it f}$  over [a,b].
- -f replaced with a rigorous polynomial approximation :  $(T, \Delta)$
- RPAs based on Taylor series
   → Taylor Models (TMs).
- → Certify RPAs based on best polynomial approximations: use intermediary RPAs obtained in (1). (3).
- (3). Near-best RPAs: based on Chebyshev Series
  - f is an elementary function, e.g.  $\exp(1/\cos(x))$ ;
  - f is a D-finite function, i.e. solution of an ordinary differential equation with polynomia coefficients, e.g. exp, Airy, Bessel.
- (4). Other orthogonal polynomials...

- Consider "sufficiently smooth" univariate functions f over [a, b].
- f replaced with a rigorous polynomial approximation :  $(T, \Delta)$
- RPAs based on Taylor series
   → Taylor Models (TMs).
- → Certify RPAs based on best polynomial approximations: use intermediary RPAs obtained in (1) (3).
- (3). Near-best RPAs: based on Chebyshev Series
  - f is an elementary function, e.g.  $\exp(1/\cos(x))$ ;
  - f is a D-finite function, i.e. solution of an ordinary differential equation with polynomia coefficients, e.g. exp, Airy, Bessel.
- (4). Other orthogonal polynomials...

- Consider "sufficiently smooth" univariate functions f over [a,b].
- f replaced with a rigorous polynomial approximation :  $(T, \Delta)$
- RPAs based on Taylor series
   → Taylor Models (TMs).
- (2). → Certify RPAs based on best polynomial approximations: use intermediary RPAs obtained in (1), (3).
- (3). Near-best RPAs: based on Chebyshev Series
  - f is an elementary function, e.g.  $\exp(1/\cos(x))$ ;
  - f is a D-finite function, i.e. solution of an ordinary differential equation with polynomia coefficients, e.g. exp, Airy, Bessel.
- (4). Other orthogonal polynomials...

- Consider "sufficiently smooth" univariate functions f over [a,b].
- f replaced with a rigorous polynomial approximation :  $(T, \Delta)$
- RPAs based on Taylor series
   → Taylor Models (TMs).
- → Certify RPAs based on best polynomial approximations: use intermediary RPAs obtained in (1), (3).
- (3). Near-best RPAs: based on Chebyshev Series
  - → Chebyshev Models (CMs).
    - f is an elementary function, e.g.  $\exp(1/\cos(x))$ ;
    - f is a D-finite function, i.e. solution of an ordinary differential equation with polynomial coefficients, e.g. exp, Airy, Bessel.
- (4). Other orthogonal polynomials...

- Consider "sufficiently smooth" univariate functions f over [a, b].
- f replaced with a rigorous polynomial approximation :  $(T, \Delta)$
- → Certify RPAs based on best polynomial approximations: use intermediary RPAs obtained in (1), (3).
- (3). Near-best RPAs: based on Chebyshev Series
  - → Chebyshev Models (CMs).
    - f is an elementary function, e.g.  $\exp(1/\cos(x))$ ;
    - f is a D-finite function, i.e. solution of an ordinary differential equation with polynomial coefficients, e.g. exp, Airy, Bessel.
- (4). Other orthogonal polynomials...

- Consider Taylor approximations

#### - Consider Taylor approximations

Let  $n \in \mathbb{N}$ , n+1 times differentiable function f over [a,b] around  $x_0$ .

$$f(x) = \underbrace{\sum_{i=0}^{n} \frac{f^{(i)}(x_0)(x - x_0)^i}{i!}}_{T(x)} + \underbrace{\Delta_n(x)}_{\Delta}$$

#### - Consider Taylor approximations

Let  $n \in \mathbb{N}$ , n+1 times differentiable function f over [a,b] around  $x_0$ .

$$f(x) = \underbrace{\sum_{i=0}^{n} \frac{f^{(i)}(x_0)(x - x_0)^i}{i!}}_{T(x)} + \underbrace{\Delta_n(x)}_{\Delta}$$

#### - For obtaining $\Delta$ :

• For "basic functions" (sin, cos, etc.) use Lagrange formula  $\forall x \in [a,b], \ \exists \xi \in [a,b] \ \text{s.t.} \ \Delta_n(x,\xi) = \frac{f^{(n+1)}(\xi)(x-x_0)^{n+1}}{(n+1)!}$ 

#### - Consider Taylor approximations

Let  $n \in \mathbb{N}$ , n+1 times differentiable function f over [a,b] around  $x_0$ .

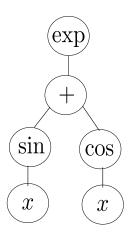
$$f(x) = \underbrace{\sum_{i=0}^{n} \frac{f^{(i)}(x_0)(x - x_0)^i}{i!}}_{T(x)} + \underbrace{\Delta_n(x)}_{\Delta}$$

#### - For obtaining $\Delta$ :

- For "basic functions" (sin, cos, etc.) use Lagrange formula
- For "composite functions" use a two-step procedure:
  - compute models  $(T, \Delta)$  for all basic functions;
  - apply algebraic rules with these models, instead of operations with the corresponding functions.

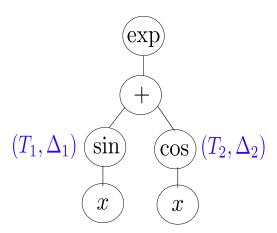
# Taylor Models → Algebra of RPAs

Example:  $f_{\text{comp}}(x) = \exp(\sin(x) + \cos(x))$ 



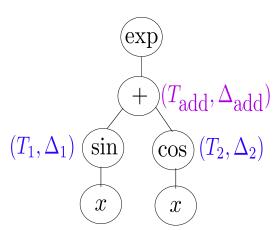
# Taylor Models → Algebra of RPAs

Example:  $f_{comp}(x) = \exp(\sin(x) + \cos(x))$ 



# Taylor Models $\rightsquigarrow$ Algebra of RPAs

Example:  $f_{comp}(x) = \exp(\sin(x) + \cos(x))$ 



# Taylor Models → Algebra of RPAs

Example: 
$$f_{\text{comp}}(x) = \exp(\sin(x) + \cos(x))$$

$$(T_{\text{COMP}}, \Delta_{\text{COMP}}) \exp$$

$$+ (T_{\text{add}}, \Delta_{\text{add}})$$

$$(T_{1}, \Delta_{1}) \sin \cos(T_{2}, \Delta_{2})$$

Otherwise  $\boldsymbol{\Delta}$  can be largely overestimated.

Otherwise  $\triangle$  can be largely overestimated.

#### Example:

$$f(x) = e^{1/\cos x} \text{, over } [0,1] \text{, } n = 13 \text{, } x_0 = 0.5. \ f(x) - T(x) \in [0,4.56 \cdot 10^{-3}]$$

Otherwise  $\triangle$  can be largely overestimated.

#### Example:

$$f(x) = e^{1/\cos x} \text{, over } [0,1] \text{, } n = 13 \text{, } x_0 = 0.5. \ f(x) - T(x) \in [0,4.56 \cdot 10^{-3}]$$

Automatic differentiation and Lagrange formula:

$$\Delta = [-1.93 \cdot 10^2, 1.35 \cdot 10^3]$$

Otherwise  $\triangle$  can be largely overestimated.

#### Example:

$$f(x) = e^{1/\cos x}$$
, over  $[0,1]$ ,  $n = 13$ ,  $x_0 = 0.5$ .  $f(x) - T(x) \in [0,4.56 \cdot 10^{-3}]$ 

- Automatic differentiation and Lagrange formula:
  - $\Delta = [-1.93 \cdot 10^2, 1.35 \cdot 10^3]$
- Cauchy's Estimate

$$\Delta = [-9.17 \cdot 10^{-2}, \, 9.17 \cdot 10^{-2}]$$

Otherwise  $\triangle$  can be largely overestimated.

#### Example:

$$f(x) = e^{1/\cos x} \text{, over } [0,1] \text{, } n = 13 \text{, } x_0 = 0.5. \ f(x) - T(x) \in [0,4.56 \cdot 10^{-3}]$$

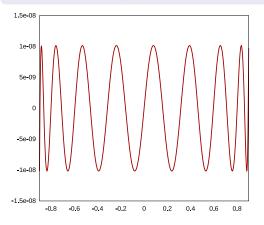
- Automatic differentiation and Lagrange formula:
  - $\mathbf{\Delta} = [-1.93 \cdot 10^2, \, 1.35 \cdot 10^3]$
- Cauchy's Estimate  $\Delta = [-9.17 \cdot 10^{-2}, 9.17 \cdot 10^{-2}]$
- Taylor Models

$$\mathbf{\Delta} = [-9.04 \cdot 10^{-3}, \, 9.06 \cdot 10^{-3}]$$

# Another $L^{\infty}$ (Minimax) example

#### Example:

$$\begin{array}{ll} f(x) = \arctan(x) \text{ over } [-0.9, 0.9], & p(x) \text{ - minimax, degree } 15, \\ \varepsilon(x) = p(x) - f(x), \; \|\varepsilon\|_{\infty} \simeq 10^{-8} \end{array}$$



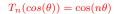
Taylor approximations: need a TM of degree 120 (in theory)

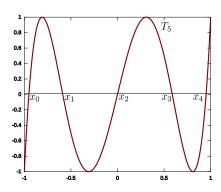
In practice, computed interval error bound not sufficiently small due to overestimation.

# Improvement?

- Use a polynomial approximation better than Taylor:
  - Why?
    - better convergence domains
    - better compact approximations on larger domains

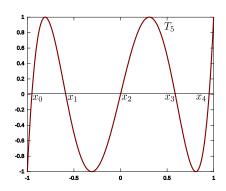
# Quick Reminder: Chebyshev Polynomials





# Quick Reminder: Chebyshev Polynomials

$$T_n(cos(\theta)) = cos(n\theta)$$



### Chebyshev nodes: n distinct real roots in $\left[-1,1\right]$ of $T_n$

$$x_k = \cos\left(\frac{(k+1/2)\pi}{n}\right), k = 0, \dots, n-1.$$

# Quick Reminder: Chebyshev Polynomials

$$T_n(cos(\theta)) = cos(n\theta)$$



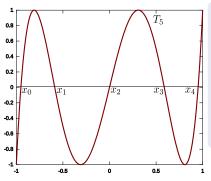
$$T_{i+1} = 2xT_i - T_{i-1}, T_0(x) = 1, T_1(x) = x$$

### Chebyshev nodes: n distinct real roots in $\left[-1,1\right]$ of $T_n$

$$x_k = \cos\left(\frac{(k+1/2)\pi}{n}\right), k = 0, \dots, n-1.$$

# Quick Reminder: Chebyshev Polynomials

$$T_n(cos(\theta)) = cos(n\theta)$$



$$T_{i+1} = 2xT_i - T_{i-1}, T_0(x) = 1, T_1(x) = x$$

Orthogonality:

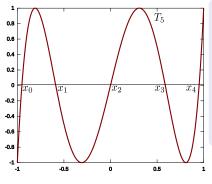
$$\int_{-1}^{1} \frac{T_i(x)T_j(x)}{\sqrt{1-x^2}} dx = \begin{cases} 0 & \text{if } i \neq j \\ \pi & \text{if } i = 0 \\ \frac{\pi}{2} & \text{otherwise} \end{cases}$$

#### Chebyshev nodes: n distinct real roots in $\left[-1,1\right]$ of $T_{n}$

$$x_k = \cos\left(\frac{(k+1/2)\pi}{n}\right), k = 0, \dots, n-1.$$

# Quick Reminder: Chebyshev Polynomials

$$T_n(cos(\theta)) = cos(n\theta)$$



$$T_{i+1} = 2xT_i - T_{i-1}, T_0(x) = 1, T_1(x) = x$$

Orthogonality:

$$\int_{-1}^{1} \frac{T_i(x)T_j(x)}{\sqrt{1-x^2}} dx = \begin{cases} 0 & \text{if } i \neq j \\ \pi & \text{if } i = 0 \\ \frac{\pi}{2} & \text{otherwise} \end{cases}$$

$$\sum_{k=0}^{n-1} T_i(x_k) T_j(x_k) = \begin{cases} 0 & \text{if } i \neq j \\ n & \text{if } i = 0 \\ \frac{n}{2} & \text{otherwise} \end{cases}$$

#### Chebyshev nodes: n distinct real roots in $\left[-1,1\right]$ of $T_n$

$$x_k = \cos\left(\frac{(k+1/2)\pi}{n}\right), k = 0, \dots, n-1.$$

#### Two approximations of f:

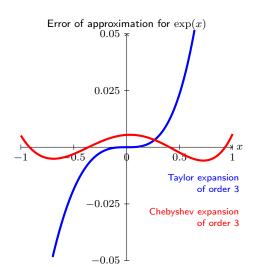
by Taylor series

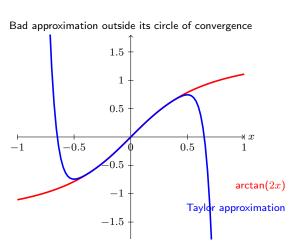
$$f = \sum_{n=0}^{+\infty} c_n x^n, \ c_n = \frac{f^{(n)}(0)}{n!},$$

or by Chebyshev series

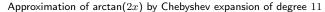
$$f = \sum_{n = -\infty}^{+\infty} t_n T_n(x),$$

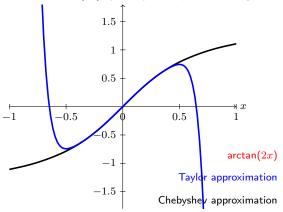
$$t_n = \frac{1}{\pi} \int_{-1}^{1} T_n(t) \frac{f(t)}{\sqrt{1-t^2}} dt.$$





## Chebyshev Series vs Taylor Series II

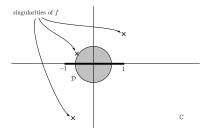




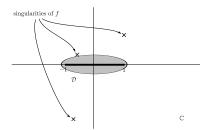
## Chebyshev Series vs Taylor Series III

#### Convergence Domains :

For Taylor series: disc centered at  $x_0=0$  which avoids all the singularities of f



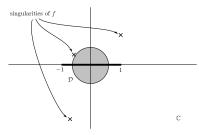
For Chebyshev series: elliptic disc with foci at  $\pm 1$  which avoids all the singularities of f



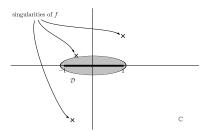
## Chebyshev Series vs Taylor Series III

#### Convergence Domains :

For Taylor series: disc centered at  $x_0=0$  which avoids all the singularities of f



For Chebyshev series: elliptic disc with foci at  $\pm 1$  which avoids all the singularities of f

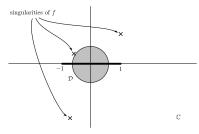


ullet Taylor series can not converge over entire [-1,1] unless all singularities lie outside the unit circle.

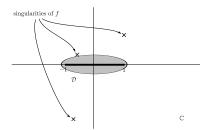
## Chebyshev Series vs Taylor Series III

#### Convergence Domains:

For Taylor series: disc centered at  $x_0=0$  which avoids all the singularities of f



For Chebyshev series: elliptic disc with foci at  $\pm 1$  which avoids all the singularities of f



- ullet Taylor series can not converge over entire [-1,1] unless all singularities lie outside the unit circle.
- $\checkmark$  Chebyshev series converge over entire [-1,1] as soon as there are no real singularities in [-1,1].

## Chebyshev Series vs Taylor Series IV

Truncation Error:

#### Taylor series, Lagrange formula:

$$\forall x \in [-1, 1], \exists \xi \in [-1, 1] \text{ s.t.}$$

$$f(x) - T(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

## Chebyshev Series vs Taylor Series IV

#### Truncation Error:

#### Taylor series, Lagrange formula:

$$\forall x \in [-1,1], \ \exists \xi \in [-1,1] \ \text{ s.t.}$$

$$f(x) - T(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

#### Chebyshev series, Bernstein-like formula:

$$\forall x \in [-1,1], \ \exists \xi \in [-1,1] \ \text{ s.t.}$$

$$f(x) - P(x) = \frac{f^{(n+1)}(\xi)}{2^n(n+1)!}.$$

## Chebyshev Series vs Taylor Series IV

Truncation Error:

#### Taylor series, Lagrange formula:

 $\forall x \in [-1,1], \ \exists \xi \in [-1,1] \ \text{ s.t.}$ 

$$f(x) - T(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

#### Chebyshev series, Bernstein-like formula:

 $\forall x \in [-1,1], \ \exists \xi \in [-1,1] \ \text{s.t.}$ 

$$f(x) - P(x) = \frac{f^{(n+1)}(\xi)}{2^n(n+1)!}.$$

 $\lceil \sqrt{ } \rceil$  We should have an improvement of  $2^n$  in the width of the Chebyshev truncation error.

# Quality of approximation of truncated Chebyshev series compared to best polynomial approximation $% \left( 1\right) =\left( 1\right) \left( 1\right$

It is well-known that truncated Chebyshev series  $\pi_d(f)$  are *near-best* uniform approximations [Chap 5.5, Mason & Handscomb 2003].

# Quality of approximation of truncated Chebyshev series compared to best polynomial approximation

It is well-known that truncated Chebyshev series  $\pi_d(f)$  are near-best uniform approximations [Chap 5.5, Mason & Handscomb 2003].

Let  $p_d^*$  is the polynomial of degree at most d that minimizes  $\|f-p\|_\infty = \sup_{-1 \le x \le 1} |f(x)-p(x)|.$ 

# Quality of approximation of truncated Chebyshev series compared to best polynomial approximation

It is well-known that truncated Chebyshev series  $\pi_d(f)$  are *near-best* uniform approximations [Chap 5.5, Mason & Handscomb 2003].

Let  $p_d^*$  is the polynomial of degree at most d that minimizes  $\|f-p\|_{\infty}=\sup_{-1< x<1}|f(x)-p(x)|.$ 

$$||f - \pi_d(f)||_{\infty} \le \underbrace{\left(\frac{4}{\pi^2} \log d + O(1)\right)}_{\Lambda_d} ||f - p_d^*||_{\infty}$$
 (1)

# Quality of approximation of truncated Chebyshev series compared to best polynomial approximation

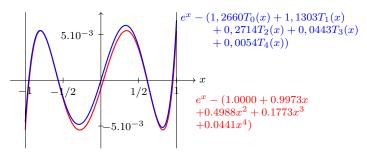
It is well-known that truncated Chebyshev series  $\pi_d(f)$  are *near-best* uniform approximations [Chap 5.5, Mason & Handscomb 2003].

Let  $p_d^*$  is the polynomial of degree at most d that minimizes  $\|f-p\|_{\infty}=\sup_{-1< x<1}|f(x)-p(x)|.$ 

$$||f - \pi_d(f)||_{\infty} \leqslant \underbrace{\left(\frac{4}{\pi^2} \log d + O(1)\right)}_{\Lambda_d} ||f - p_d^*||_{\infty} \tag{1}$$

- $\Lambda_{10} = 2.22... \rightarrow$  we lose at most 2 bits
- $\Lambda_{30} = 2.65... \rightarrow$  we lose at most 2 bits
- $\bullet$   $\Lambda_{100}=3.13... \rightarrow$  we lose at most 3 bits
- $\Lambda_{500}=3.78... 
  ightarrow$  we lose at most 3 bits

### Chebyshev truncations are near-best: Example



Chebyshev truncation of degree 4

Best approximant of degree 4

# Chebyshev Series vs Taylor Series (9gag version)



## Computing the coefficients

Chebyshev series of 
$$f = \sum_{i=-\infty}^{+\infty} t_i T_i(x)$$
 :

– Orthogonality 
$$\leadsto t_i = \frac{1}{\pi} \int_{-1}^1 T_i(t) \frac{f(t)}{\sqrt{1-t^2}} dt \leadsto {\sf TCS}$$

# Computing the coefficients

Chebyshev series of 
$$f = \sum_{i=-\infty}^{+\infty} t_i T_i(x)$$
 :

- Orthogonality 
$$\sim t_i = \frac{1}{\pi} \int_{-1}^1 T_i(t) \frac{f(t)}{\sqrt{1-t^2}} dt \sim TCS$$

– Discrete orthogonality 
$$\leadsto \widetilde{t}_i = \sum\limits_{k=0}^n \frac{1}{n+1} f(x_k) T_i(x_k) \leadsto \mathsf{Chebyshev} \; \mathsf{Interpolant} \; \mathsf{(CI)}$$

# Computing the coefficients

Chebyshev series of 
$$f = \sum_{i=-\infty}^{+\infty} t_i T_i(x)$$
 :

- Orthogonality  $\leadsto t_i = \frac{1}{\pi} \int_{-1}^1 T_i(t) \frac{f(t)}{\sqrt{1-t^2}} dt \leadsto {\sf TCS}$
- Discrete orthogonality  $\leadsto \widetilde{t}_i = \sum\limits_{k=0}^n \frac{1}{n+1} f(x_k) T_i(x_k) \leadsto \mathsf{Chebyshev} \; \mathsf{Interpolant} \; \mathsf{(CI)}$

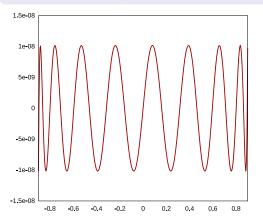
#### Remark: TCS or CI?

- ullet CI: when f is elementary, evaluating f at Chebyshev nodes is easy
- TCS: when f is given by LODE

# Another $L^{\infty}$ (Minimax) example

#### Example:

$$\begin{array}{ll} f(x) = \arctan(x) \text{ over } [-0.9, 0.9], & p(x) \text{ - minimax, degree } 15, \\ \varepsilon(x) = p(x) - f(x), \; \|\varepsilon\|_{\infty} \simeq 10^{-8} \end{array}$$



Taylor approximations: need a TM of degree 120 (in theory)

In practice, computed interval error bound not sufficiently small due to overestimation.

A CM of degree 60 works.

#### CMs vs. TMs

#### Comparison between remainder bounds for several functions:

| f(x), I, n                                      | СМ                    | Timing (ms) | ТМ                    | Timing (ms) |
|-------------------------------------------------|-----------------------|-------------|-----------------------|-------------|
| $\sin(x)$ , [3, 4], 10                          | $1.19 \cdot 10^{-14}$ | 4           | $1.22 \cdot 10^{-11}$ | 2           |
| arctan(x), [-0.25, 0.25], 15                    | $7.89 \cdot 10^{-15}$ | 10          | $2.58 \cdot 10^{-10}$ | 4           |
| arctan(x), [-0.9, 0.9], 15                      | $5.10 \cdot 10^{-3}$  | 14          | $1.67 \cdot 10^{2}$   | 7           |
| $\exp(1/\cos(x))$ , [0, 1], 14                  | $5.22 \cdot 10^{-7}$  | 31          | $9.06 \cdot 10^{-3}$  | 14          |
| $\frac{\exp(x)}{\log(2+x)\cos(x)}$ , [0, 1], 15 | $4.86 \cdot 10^{-9}$  | 38          | 1.18 · 10 - 3         | 19          |
| $\sin(\exp(x)), [-1, 1], 10$                    | $2.56 \cdot 10^{-5}$  | 7           | $2.96 \cdot 10^{-2}$  | 4           |



LIBMs

IEEE 754-2008 standard

Automatic approach for many functions

Best FPMinimaxApprox

Certifying Approx & Rounding Errors

Many thanks for N. Brisebarre and B. Salvy for useful sources and resources related to their

course on approximation http://www.ens-lyon.fr/LIP/AriC/M2R/ASNA/