
Some validated symbolic-numeric approximation algorithms

M. Joldes
joint works with D. Arzelier, F. Bréhard, N. Brisebarre, J.-M. Muller, J.-B. Lasserre, A. Rondepierre, B. Salvy

LAAS-CNRS, Toulouse, France

Winter Workshop on Dynamics, Topology and Computations, BEDLEWO, Poland

January 28 - February 3, 2018

Context

Numerical Computing: floating-point arithmetic
→ High Performance Computing (MultiCores, GPUs, FPGAs):

Fast numerical solutions: global optimization, systems of differential equations, integration
Usually, solutions lack certification of the output accuracy

A catastrophic cancellation example:
Evaluate

(333.75− a2)b6 + a2
(
11a2b2 − 121b4 − 2

)
+ 5.5b8︸ ︷︷ ︸

5.5b8 − 2− 5.5b8 eval to 0 by cancellation

+
a

2b

for a = 77617.0, b = 33096.0 (Rump ’88)
Results of C program, gcc, Linux:
1.1726039400531787 in binary64;
1.1726039400531786318588349045201838 in binary128. Exact result is −0.827396

→ Computer Algebra Systems (eg. Maple):
Exact solution, e.g. − 54767

66192

1 / 52

Context

Numerical Computing: floating-point arithmetic
→ High Performance Computing (MultiCores, GPUs, FPGAs):

Fast numerical solutions: global optimization, systems of differential equations, integration
Usually, solutions lack certification of the output accuracy

A catastrophic cancellation example:
Evaluate

(333.75− a2)b6 + a2
(
11a2b2 − 121b4 − 2

)
+ 5.5b8

︸ ︷︷ ︸
5.5b8 − 2− 5.5b8 eval to 0 by cancellation

+
a

2b

for a = 77617.0, b = 33096.0 (Rump ’88)
Results of C program, gcc, Linux:
1.1726039400531787 in binary64;
1.1726039400531786318588349045201838 in binary128. Exact result is −0.827396

→ Computer Algebra Systems (eg. Maple):
Exact solution, e.g. − 54767

66192

1 / 52

Context

Numerical Computing: floating-point arithmetic
→ High Performance Computing (MultiCores, GPUs, FPGAs):

Fast numerical solutions: global optimization, systems of differential equations, integration
Usually, solutions lack certification of the output accuracy

A catastrophic cancellation example:
Evaluate

(333.75− a2)b6 + a2
(
11a2b2 − 121b4 − 2

)
+ 5.5b8

︸ ︷︷ ︸
5.5b8 − 2− 5.5b8 eval to 0 by cancellation

+
a

2b

for a = 77617.0, b = 33096.0 (Rump ’88)
Results of C program, gcc, Linux:
1.1726039400531787 in binary64;
1.1726039400531786318588349045201838 in binary128. Exact result is −0.827396

→ Computer Algebra Systems (eg. Maple):
Exact solution, e.g. − 54767

66192

1 / 52

Context

Numerical Computing: floating-point arithmetic
→ High Performance Computing (MultiCores, GPUs, FPGAs):

Fast numerical solutions: global optimization, systems of differential equations, integration
Usually, solutions lack certification of the output accuracy

A catastrophic cancellation example:
Evaluate

(333.75− a2)b6 + a2
(
11a2b2 − 121b4 − 2

)
+ 5.5b8︸ ︷︷ ︸

5.5b8 − 2− 5.5b8 eval to 0 by cancellation

+
a

2b

for a = 77617.0, b = 33096.0 (Rump ’88)
Results of C program, gcc, Linux:
1.1726039400531787 in binary64;
1.1726039400531786318588349045201838 in binary128. Exact result is −0.827396

→ Computer Algebra Systems (eg. Maple):
Exact solution, e.g. − 54767

66192

1 / 52

1st Case Study: Machine Implementation of Elementary Functions

Constrained minimax polynomial approximation

Find c2, c3 ∈ Z such that

max
−2−12≤x≤2−12

∣∣∣expx−
(

1 + x+
c2

253
x2 +

c3

253
x3
)∣∣∣

is minimal.

Best truncated polynomial:

p?(x) = 1 + x+
4503599645901977

253
x2 +

4503599645901977

252
x3

Approx error ε(x) := expx− p?(x) is :

Prove that:

||ε||[−2−12;2−12] := max
−2−12≤x≤2−12

|ε(x)|

≤ 2.58 · 10−17

' 54 bits accuracy.

2 / 52

1st Case Study: Machine Implementation of Elementary Functions

Constrained minimax polynomial approximation

Find c2, c3 ∈ Z such that

max
−2−12≤x≤2−12

∣∣∣expx−
(

1 + x+
c2

253
x2 +

c3

253
x3
)∣∣∣

is minimal.

Best truncated polynomial:

p?(x) = 1 + x+
4503599645901977

253
x2 +

4503599645901977

252
x3

Approx error ε(x) := expx− p?(x) is :

Prove that:

||ε||[−2−12;2−12] := max
−2−12≤x≤2−12

|ε(x)|

≤ 2.58 · 10−17

' 54 bits accuracy.

2 / 52

1st Case Study: Machine Implementation of Elementary Functions

Constrained minimax polynomial approximation

Find c2, c3 ∈ Z such that

max
−2−12≤x≤2−12

∣∣∣expx−
(

1 + x+
c2

253
x2 +

c3

253
x3
)∣∣∣

is minimal.
Best truncated polynomial:

p?(x) = 1 + x+
4503599645901977

253
x2 +

4503599645901977

252
x3

Approx error ε(x) := expx− p?(x) is (with Maple, 16 digits) :

Prove that:

||ε||[−2−12;2−12] := max
−2−12≤x≤2−12

|ε(x)|

≤ 2.58 · 10−17

' 54 bits accuracy.

2 / 52

1st Case Study: Machine Implementation of Elementary Functions

Constrained minimax polynomial approximation

Find c2, c3 ∈ Z such that

max
−2−12≤x≤2−12

∣∣∣expx−
(

1 + x+
c2

253
x2 +

c3

253
x3
)∣∣∣

is minimal.
Best truncated polynomial:

p?(x) = 1 + x+
4503599645901977

253
x2 +

4503599645901977

252
x3

Approx error ε(x) := expx− p?(x) is (with Sollya):

-3e-17

-2e-17

-1e-17

0

1e-17

2e-17

3e-17

-0.0002 -0.00015 -0.0001 -5e-05 0 5e-05 0.0001 0.00015 0.0002

Prove that:

||ε||[−2−12;2−12] := max
−2−12≤x≤2−12

|ε(x)|

≤ 2.58 · 10−17

' 54 bits accuracy.

2 / 52

1st Case Study: Machine Implementation of Elementary Functions

Constrained minimax polynomial approximation

Find c2, c3 ∈ Z such that

max
−2−12≤x≤2−12

∣∣∣expx−
(

1 + x+
c2

253
x2 +

c3

253
x3
)∣∣∣

is minimal.
Best truncated polynomial:

p?(x) = 1 + x+
4503599645901977

253
x2 +

4503599645901977

252
x3

Approx error ε(x) := expx− p?(x) is (with Sollya):

-3e-17

-2e-17

-1e-17

0

1e-17

2e-17

3e-17

-0.0002 -0.00015 -0.0001 -5e-05 0 5e-05 0.0001 0.00015 0.0002

Prove that:

||ε||[−2−12;2−12] := max
−2−12≤x≤2−12

|ε(x)|

≤ 2.58 · 10−17

' 54 bits accuracy.

2 / 52

2nd Case Study: Chebyshev Series of D-finite Functions

Taylor series: exp =
∑ 1

n!
xn

Recurrence for coefficients:

u(n+ 1) =
u(n)

n+ 1
u(0) = 1 1/0! = 1

u(1) = 1 1/1! = 1

u(2) = 0.5 1/2! = 0.5

...
...

u(50) ≈ 3.28 · 10−65 1/50! ≈ 3.28 · 10−65

More subtle cause:

Convergent and Divergent Solutions of the Recurrence u(n+ 1) = −2nu(n) + u(n− 1):
If u(n) is solution, then there exists another solution v(n) ∼ 1

u(n)

3 / 52

2nd Case Study: Chebyshev Series of D-finite Functions

Taylor series: exp =
∑ 1

n!
xn

Recurrence for coefficients:

u(n+ 1) =
u(n)

n+ 1
u(0) = 1 1/0! = 1

u(1) = 1 1/1! = 1

u(2) = 0.5 1/2! = 0.5

...
...

u(50) ≈ 3.28 · 10−65 1/50! ≈ 3.28 · 10−65

More subtle cause:

Convergent and Divergent Solutions of the Recurrence u(n+ 1) = −2nu(n) + u(n− 1):
If u(n) is solution, then there exists another solution v(n) ∼ 1

u(n)

3 / 52

2nd Case Study: Chebyshev Series of D-finite Functions

Taylor series: exp =
∑ 1

n!
xn

Recurrence for coefficients:

u(n+ 1) =
u(n)

n+ 1
u(0) = 1 1/0! = 1

u(1) = 1 1/1! = 1

u(2) = 0.5 1/2! = 0.5

...
...

u(50) ≈ 3.28 · 10−65 1/50! ≈ 3.28 · 10−65

Chebyshev series: exp =
∑
In(1)Tn(x)

Recurrence for coefficients:
u(n+ 1) = −2nu(n) + u(n− 1)

u(0) = 1.266 I0(1) ≈ 1.266

u(1) = 0.565 I1(1) ≈ 0.565

u(2) ≈ 0.136 I2(1) ≈ 0.136

...
...

u(50) ≈ 4.450 · 1067 I50(1) ≈ 2.934 · 10−80

More subtle cause:

Convergent and Divergent Solutions of the Recurrence u(n+ 1) = −2nu(n) + u(n− 1):
If u(n) is solution, then there exists another solution v(n) ∼ 1

u(n)

3 / 52

2nd Case Study: Chebyshev Series of D-finite Functions

Taylor series: exp =
∑ 1

n!
xn

Recurrence for coefficients:

u(n+ 1) =
u(n)

n+ 1
u(0) = 1 1/0! = 1

u(1) = 1 1/1! = 1

u(2) = 0.5 1/2! = 0.5

...
...

u(50) ≈ 3.28 · 10−65 1/50! ≈ 3.28 · 10−65

Chebyshev series: exp =
∑
In(1)Tn(x)

Recurrence for coefficients:
u(n+ 1) = −2nu(n) + u(n− 1)

u(0) = 1.266 I0(1) ≈ 1.266

u(1) = 0.565 I1(1) ≈ 0.565

u(2) ≈ 0.136 I2(1) ≈ 0.136

...
...

u(50) ≈ 4.450 · 1067 I50(1) ≈ 2.934 · 10−80

More subtle cause:

Convergent and Divergent Solutions of the Recurrence u(n+ 1) = −2nu(n) + u(n− 1):
If u(n) is solution, then there exists another solution v(n) ∼ 1

u(n)

3 / 52

2nd Case Study: Chebyshev Series of D-finite Functions

Taylor series: exp =
∑ 1

n!
xn

Recurrence for coefficients:

u(n+ 1) =
u(n)

n+ 1
u(0) = 1 1/0! = 1

u(1) = 1 1/1! = 1

u(2) = 0.5 1/2! = 0.5

...
...

u(50) ≈ 3.28 · 10−65 1/50! ≈ 3.28 · 10−65

Chebyshev series: exp =
∑
In(1)Tn(x)

Recurrence for coefficients:
u(n+ 1) = −2nu(n) + u(n− 1)

u(0) = 1.266 I0(1) ≈ 1.266

u(1) = 0.565 I1(1) ≈ 0.565

u(2) ≈ 0.136 I2(1) ≈ 0.136

...
...

u(50) ≈ 4.450 · 1067 I50(1) ≈ 2.934 · 10−80

More subtle cause:

Convergent and Divergent Solutions of the Recurrence u(n+ 1) = −2nu(n) + u(n− 1):
If u(n) is solution, then there exists another solution v(n) ∼ 1

u(n)

3 / 52

3rd Case Study: Cancellation in finite precision power series evaluation

Example: exp(−x) =
∞∑
i=0

(−1)ixi

i!

exp(−20) = 1−20 . . .+1.66 · 107−1.23 · 107+ . . .+1.19 · 10−8−3.45 · 10−9 . . .

Values of
∣∣∣ (−1)i20i

i!

∣∣∣, compared to exp(−20) ' 2.06 · 10−9:

Lost Digits: ' log
max
i

20i

i!

exp(−20)

 54 bits lost, hence binary64 result: 0.01583705682...

4 / 52

3rd Case Study: Cancellation in finite precision power series evaluation

Example: exp(−x) =
∞∑
i=0

(−1)ixi

i!

exp(−20) = 1−20 . . .+1.66 · 107−1.23 · 107+ . . .+1.19 · 10−8−3.45 · 10−9 . . .

Values of
∣∣∣ (−1)i20i

i!

∣∣∣, compared to exp(−20) ' 2.06 · 10−9:

Lost Digits: ' log
max
i

20i

i!

exp(−20)

 54 bits lost, hence binary64 result: 0.01583705682...

4 / 52

3rd Case Study: Cancellation in finite precision power series evaluation

Example: exp(−x) =
∞∑
i=0

(−1)ixi

i!

exp(−20) = 1−20 . . .+1.66 · 107−1.23 · 107+ . . .+1.19 · 10−8−3.45 · 10−9 . . .

Values of
∣∣∣ (−1)i20i

i!

∣∣∣, compared to exp(−20) ' 2.06 · 10−9:

Lost Digits: ' log
max
i

20i

i!

exp(−20)

 54 bits lost, hence binary64 result: 0.01583705682...

4 / 52

Safety-critical space applications

2009, Feb. 10: collision between Iridium 33 and Cosmos 2251, although predicted
minimum distance of close approach was of 584m.

Figure: Animation of Iridium 33 and Kosmos 2251’s collision; GNU Free Documentation, Wikipedia

Collision probabilities estimated by reliable and efficient integral computations...

5 / 52

Safety-critical space applications

2009, Feb. 10: collision between Iridium 33 and Cosmos 2251, although predicted
minimum distance of close approach was of 584m.

Figure: Animation of Iridium 33 and Kosmos 2251’s collision; GNU Free Documentation, Wikipedia

Collision probabilities estimated by reliable and efficient integral computations...

5 / 52

Safety-critical space applications

2009, Feb. 10: collision between Iridium 33 and Cosmos 2251, although predicted
minimum distance of close approach was of 584m.

Figure: Animation of Iridium 33 and Kosmos 2251’s collision; GNU Free Documentation, Wikipedia

Collision probabilities estimated by reliable and efficient integral computations...

5 / 52

Computational methods (ultimate efficiency required)
are a basic building brick

(courtesy 9gag.com)

6 / 52

9gag.com

Floating point (FP) Arithmetic I

A real number is approximated in machine by a rational x:

x = (−1)s ×m× βe

β is the radix (usually β = 2)

s is a sign bit

m is the mantissa, a rational number of nm digits in radix β:

m = d0, d1d2...dnm−1

e is the exponent, a signed integer on ne bits

7 / 52

IEEE 754-2008 standard

Most common formats

Single (binary32) precision format (p = 24):

s e m

1 8 23

Double (binary64) precision format (p = 53):

s e m

1 11 52

−→ Implicit bit that is not stored.

Rounding modes

4 rounding modes: RD, RU, RZ, RN

Correct rounding for: +,−,×,÷,√ (return what we would get by infinitely precise
operations followed by rounding).

Portability, determinism.

8 / 52

IEEE 754-2008 standard

Most common formats

Single (binary32) precision format (p = 24):

s e m

1 8 23

Double (binary64) precision format (p = 53):

s e m

1 11 52

−→ Implicit bit that is not stored.

Rounding modes

4 rounding modes: RD, RU, RZ, RN

Correct rounding for: +,−,×,÷,√ (return what we would get by infinitely precise
operations followed by rounding).

Portability, determinism.

8 / 52

Multiple vs. standard precision

Standard precision hardware fast
Multiple precision software 100x slower (typically)

Two ways of representing numbers in extended precision

multiple-digit representation - a number is represented by a sequence of digits coupled
with a single exponent (Ex. GNU MPFR, ARPREC);

multiple-term representation - a number is expressed as the unevaluated sum of several
FP numbers (also called a FP expansion) (Ex. QD, CAMPARY).

Example: π in double-double

p0 = 11.0010010000111111011010101000100010000101101000110002,

and
p1 = 1.00011010011000100110001100110001010001011100000001112 × 2

−53
.

p0 + p1 ↔ 107 bits FP approx.

9 / 52

Multiple vs. standard precision

Standard precision hardware fast
Multiple precision software 100x slower (typically)

Two ways of representing numbers in extended precision

multiple-digit representation - a number is represented by a sequence of digits coupled
with a single exponent (Ex. GNU MPFR, ARPREC);

multiple-term representation - a number is expressed as the unevaluated sum of several
FP numbers (also called a FP expansion) (Ex. QD, CAMPARY).

Example: π in double-double

p0 = 11.0010010000111111011010101000100010000101101000110002,

and
p1 = 1.00011010011000100110001100110001010001011100000001112 × 2

−53
.

p0 + p1 ↔ 107 bits FP approx.

9 / 52

Multiple vs. standard precision

Standard precision hardware fast
Multiple precision software 100x slower (typically)

Two ways of representing numbers in extended precision

multiple-digit representation - a number is represented by a sequence of digits coupled
with a single exponent (Ex. GNU MPFR, ARPREC);

multiple-term representation - a number is expressed as the unevaluated sum of several
FP numbers (also called a FP expansion) (Ex. QD, CAMPARY).

Example: π in double-double

p0 = 11.0010010000111111011010101000100010000101101000110002,

and
p1 = 1.00011010011000100110001100110001010001011100000001112 × 2

−53
.

p0 + p1 ↔ 107 bits FP approx.

9 / 52

Floating point (FP) Arithmetic II

X Since 1985, IEEE-754 standard for FP arithmetic requests correct rounding for :
+,−,×,÷,√.

X Correct Rounding: An operation whose entries are FP numbers must return what we
would get by infinitely precise operation followed by rounding.
What about standard functions (sin, cos, log, etc.)?

Most Mathematical Libraries (libms) do not provide correctly rounded functions, although
IEEE-754-2008 recommends it.

Correctly Rounded Libm (CRLibm∗) was developed by the Arénaire/AriC team, Lyon,
France.

∗https://gforge.inria.fr/scm/browser.php?group_id=5929&extra=crlibm

10 / 52

https://gforge.inria.fr/scm/browser.php?group_id=5929&extra=crlibm

Floating point (FP) Arithmetic II

X Since 1985, IEEE-754 standard for FP arithmetic requests correct rounding for :
+,−,×,÷,√.

X Correct Rounding: An operation whose entries are FP
numbers must return what we would get by infinitely precise operation followed by rounding.

What about standard functions (sin, cos, log, etc.)?

Most Mathematical Libraries (libms) do not provide correctly rounded functions, although
IEEE-754-2008 recommends it.

Correctly Rounded Libm (CRLibm∗) was developed by the Arénaire/AriC team, Lyon,
France.

∗https://gforge.inria.fr/scm/browser.php?group_id=5929&extra=crlibm

10 / 52

https://gforge.inria.fr/scm/browser.php?group_id=5929&extra=crlibm

Floating point (FP) Arithmetic II

X Since 1985, IEEE-754 standard for FP arithmetic requests correct rounding for :
+,−,×,÷,√.

X Correct Rounding: An operation whose entries are FP
numbers must return what we would get by infinitely precise operation followed by rounding.

What about standard functions (sin, cos, log, etc.)?

Most Mathematical Libraries (libms) do not provide correctly rounded functions, although
IEEE-754-2008 recommends it.

Correctly Rounded Libm (CRLibm∗) was developed by the Arénaire/AriC team, Lyon,
France.

∗https://gforge.inria.fr/scm/browser.php?group_id=5929&extra=crlibm

10 / 52

https://gforge.inria.fr/scm/browser.php?group_id=5929&extra=crlibm

Floating point (FP) Arithmetic II

X Since 1985, IEEE-754 standard for FP arithmetic requests correct rounding for :
+,−,×,÷,√.

X Correct Rounding: An operation whose entries are FP
numbers must return what we would get by infinitely precise operation followed by rounding.

What about standard functions (sin, cos, log, etc.)?
Most Mathematical Libraries (libms) do not provide correctly rounded functions, although
IEEE-754-2008 recommends it.

Correctly Rounded Libm (CRLibm∗) was developed by the Arénaire/AriC team, Lyon,
France.

∗https://gforge.inria.fr/scm/browser.php?group_id=5929&extra=crlibm

10 / 52

https://gforge.inria.fr/scm/browser.php?group_id=5929&extra=crlibm

Floating point (FP) Arithmetic II

X Since 1985, IEEE-754 standard for FP arithmetic requests correct rounding for :
+,−,×,÷,√.

X Correct Rounding: An operation whose entries are FP
numbers must return what we would get by infinitely precise operation followed by rounding.

What about standard functions (sin, cos, log, etc.)?
Most Mathematical Libraries (libms) do not provide correctly rounded functions, although
IEEE-754-2008 recommends it.

Correctly Rounded Libm (CRLibm∗) was developed by the Arénaire/AriC team, Lyon,
France.

∗https://gforge.inria.fr/scm/browser.php?group_id=5929&extra=crlibm

10 / 52

https://gforge.inria.fr/scm/browser.php?group_id=5929&extra=crlibm

Correctly rounded functions

11 / 52

Correctly rounded functions

11 / 52

Tool & library for safe floating-point code development

Targeted for automatized implementation of libms

http://sollya.gforge.inria.fr/

Developed by C. Lauter and S. Chevillard, M.J., N. Jourdan

Used for demos in this course.

12 / 52

http://sollya.gforge.inria.fr/

Implementation of Standard Functions

exp, ln, cos, sin, arctan,
√

, . . .

Goal: evaluation of ϕ to a given accuracy η.

Step 1. Argument reduction (Payne & Hanek, Ng, Tang, etc.):
x ∈ R, ϕ(x) ' f(y), y ∈ [a, b].

Example

ex = 2
x

ln 2 = 2d
x

ln 2
c · 2

x
ln 2
−d x

ln 2
c = 2E · ex−E ln(2) = 2E · er, |r| ≤ ln 2.

= . . .

= 2M+E · t1 · t2 · ey, |y| ≤ 2−`.

13 / 52

Implementation of Standard Functions

exp, ln, cos, sin, arctan,
√

, . . .

Goal: evaluation of ϕ to a given accuracy η.

Step 1. Argument reduction (Payne & Hanek, Ng, Tang, etc.):
x ∈ R, ϕ(x) ' f(y), y ∈ [a, b].

Example

ex = 2
x

ln 2 = 2d
x

ln 2
c · 2

x
ln 2
−d x

ln 2
c = 2E · ex−E ln(2) = 2E · er, |r| ≤ ln 2.

= . . .

= 2M+E · t1 · t2 · ey, |y| ≤ 2−`.

13 / 52

Implementation of Standard Functions

Step 2. Computation of p?, a “machine-efficient” polynomial approximation of f (AriC,
implementation in Sollya)∗.

Example

Find c2, c3 ∈ Z such that

max
−2−12≤x≤2−12

∣∣∣expx−
(

1 + x+
c2

253
x2 +

c3

253
x3
)∣∣∣

is minimal.

[fpminimax Sollya routine, BrisebarreChevillard2007]

p?(x) = 1 + x+
4503599645901977

253
x2 +

4503599645901977

252
x3

∗S. Chevillard, N. Brisebarre, A. Tisserand, S. Torres

14 / 52

Implementation of Standard Functions

Step 2. Computation of p?, a “machine-efficient” polynomial approximation of f (AriC,
implementation in Sollya)∗.

Example

Find c2, c3 ∈ Z such that

max
−2−12≤x≤2−12

∣∣∣expx−
(

1 + x+
c2

253
x2 +

c3

253
x3
)∣∣∣

is minimal.

[fpminimax Sollya routine, BrisebarreChevillard2007]

p?(x) = 1 + x+
4503599645901977

253
x2 +

4503599645901977

252
x3

∗S. Chevillard, N. Brisebarre, A. Tisserand, S. Torres

14 / 52

Implementation of Standard Functions

Step 3. Computation of a rigorous approximation error bound ||f − p?(x)||∗

Example

ε(x) := expx−
(

1 + x+
4503599645901977

253
x2 +

4503599645901977

252
x3

)

-3e-17

-2e-17

-1e-17

0

1e-17

2e-17

3e-17

-0.0002 -0.00015 -0.0001 -5e-05 0 5e-05 0.0001 0.00015 0.0002

Prove that:

||ε||[−2−12;2−12] := max
−2−12≤x≤2−12

|ε(x)|

≤ 2.58 · 10−17

∗Sollya (S. Chevillard, M. Joldes, C. Lauter)

15 / 52

Implementation of Standard Functions

exp, ln, cos, sin, arctan,
√

, . . .

Goal: evaluation of ϕ to a given accuracy η.

Step 0. Computation of hardest-to-round cases (binary32 done, binary64 ongoing
projects, AriC).

Step 1. Argument reduction (Payne & Hanek, Ng, Tang, etc.):
x ∈ R, ϕ(x) ' f(y), y ∈ [a, b].

Step 2. Computation of p?, a “machine-efficient” polynomial approximation of f (AriC,
implementation in Sollya).∗.

Step 3. Computation of a rigorous approximation error ||f − p?||.†.

Step 4. Computation of a certified evaluation error of p?: GAPPA (G. Melquiond).

∗S. Chevillard, N. Brisebarre, A. Tisserand, S. Torres
†Sollya (S. Chevillard, M. Joldes, C. Lauter)

16 / 52

Implementation of Standard Functions

exp, ln, cos, sin, arctan,
√

, . . .

Goal: evaluation of ϕ to a given accuracy η.

Step 0. Computation of hardest-to-round cases (binary32 done, binary64 ongoing
projects, AriC).

Step 1. Argument reduction (Payne & Hanek, Ng, Tang, etc.):
x ∈ R, ϕ(x) ' f(y), y ∈ [a, b].

Step 2. Computation of p?, a “machine-efficient” polynomial approximation of f (AriC,
implementation in Sollya).∗.

Step 3. Computation of a rigorous approximation error ||f − p?||.†.
Step 4. Computation of a certified evaluation error of p?: GAPPA (G. Melquiond).

∗S. Chevillard, N. Brisebarre, A. Tisserand, S. Torres
†Sollya (S. Chevillard, M. Joldes, C. Lauter)

16 / 52

Implementation of Standard Functions

exp, ln, cos, sin, arctan,
√

, . . .

Goal: evaluation of ϕ to a given accuracy η.

Step 0. Computation of hardest-to-round cases (binary32 done, binary64 ongoing
projects, AriC).

Step 1. Argument reduction (Payne & Hanek, Ng, Tang, etc.):
x ∈ R, ϕ(x) ' f(y), y ∈ [a, b].

Step 2. Computation of p?, a “machine-efficient” polynomial approximation of f (AriC,
implementation in Sollya).∗.

Step 3. Computation of a rigorous approximation error ||f − p?||.†.
Step 4. Computation of a certified evaluation error of p?: GAPPA (G. Melquiond).

∗S. Chevillard, N. Brisebarre, A. Tisserand, S. Torres
†Sollya (S. Chevillard, M. Joldes, C. Lauter)

16 / 52

Polynomial Approximation

Framework of function evaluation, two norms over C([a, b]):
L2 norm: given a nonnegative weight function w ∈ C([a, b]), dx denotes the Lebesgue
measure:

g ∈ L2([a, b], w, dx)

if ∫ b

a
w(x)|g(x)|2dx <∞,

then define

‖g‖2,w =

√∫ b

a
w(x)|g(x)|2dx;

L∞ norm (aka Chebyshev, supremum norm): if g is bounded on [a, b]:

‖g‖∞ = sup
x∈[a,b]

|g(x)|,

(for continuous g, ‖g‖∞ = maxx∈[a,b] |g(x)|).

17 / 52

Polynomial Approximation

Framework of function evaluation, two norms over C([a, b]):
L2 norm: given a nonnegative weight function w ∈ C([a, b]), dx denotes the Lebesgue
measure:

g ∈ L2([a, b], w, dx)

if ∫ b

a
w(x)|g(x)|2dx <∞,

then define

‖g‖2,w =

√∫ b

a
w(x)|g(x)|2dx;

L∞ norm (aka Chebyshev, supremum norm): if g is bounded on [a, b]:

‖g‖∞ = sup
x∈[a,b]

|g(x)|,

(for continuous g, ‖g‖∞ = maxx∈[a,b] |g(x)|).

17 / 52

Polynomial Approximation

Denote Rn[X] = {p ∈ R[X]; deg p ≤ n}.

Problem

Given f ∈ C([a, b]), n ∈ N, find p ∈ Rn[X] s.t.

||p− f || = inf
q∈Rn[X]

||q − f ||.

C([a, b]) ⊂ L2([a, b], w, dx), which is a complete Hilbert space with ‖ · ‖2 and

〈f, g〉 =

∫ b

a
f(x)g(x)w(x)dx,

Hence, p := pr⊥(f) onto Rn[x].
Weierstraß Thm. (1885) Polynomials are dense in (C([a, b]), ‖ · ‖∞)

inf
q∈Rn[x]

‖q − f‖∞ → 0 as n→∞.

The infimum is reached:

Let (E, ‖ · ‖) be a normed R-vector space, let F be a finite dimensional subspace of (E, ‖ · ‖).
For all f ∈ E, there exists p ∈ F such that ‖p− f‖ = minq∈F ‖q − f‖. Moreover, the set of
best approximations to a given f ∈ E is convex.

18 / 52

Polynomial Approximation

Denote Rn[X] = {p ∈ R[X]; deg p ≤ n}.

Problem

Given f ∈ C([a, b]), n ∈ N, find p ∈ Rn[X] s.t.

||p− f || = inf
q∈Rn[X]

||q − f ||.

C([a, b]) ⊂ L2([a, b], w, dx), which is a complete Hilbert space with ‖ · ‖2 and

〈f, g〉 =

∫ b

a
f(x)g(x)w(x)dx,

Hence, p := pr⊥(f) onto Rn[x].

Weierstraß Thm. (1885) Polynomials are dense in (C([a, b]), ‖ · ‖∞)

inf
q∈Rn[x]

‖q − f‖∞ → 0 as n→∞.

The infimum is reached:

Let (E, ‖ · ‖) be a normed R-vector space, let F be a finite dimensional subspace of (E, ‖ · ‖).
For all f ∈ E, there exists p ∈ F such that ‖p− f‖ = minq∈F ‖q − f‖. Moreover, the set of
best approximations to a given f ∈ E is convex.

18 / 52

Polynomial Approximation

Denote Rn[X] = {p ∈ R[X]; deg p ≤ n}.

Problem

Given f ∈ C([a, b]), n ∈ N, find p ∈ Rn[X] s.t.

||p− f || = inf
q∈Rn[X]

||q − f ||.

C([a, b]) ⊂ L2([a, b], w, dx), which is a complete Hilbert space with ‖ · ‖2 and

〈f, g〉 =

∫ b

a
f(x)g(x)w(x)dx,

Hence, p := pr⊥(f) onto Rn[x].
Weierstraß Thm. (1885) Polynomials are dense in (C([a, b]), ‖ · ‖∞)

inf
q∈Rn[x]

‖q − f‖∞ → 0 as n→∞.

The infimum is reached:

Let (E, ‖ · ‖) be a normed R-vector space, let F be a finite dimensional subspace of (E, ‖ · ‖).
For all f ∈ E, there exists p ∈ F such that ‖p− f‖ = minq∈F ‖q − f‖. Moreover, the set of
best approximations to a given f ∈ E is convex.

18 / 52

Polynomial Approximation

Denote Rn[X] = {p ∈ R[X]; deg p ≤ n}.

Problem

Given f ∈ C([a, b]), n ∈ N, find p ∈ Rn[X] s.t.

||p− f || = inf
q∈Rn[X]

||q − f ||.

C([a, b]) ⊂ L2([a, b], w, dx), which is a complete Hilbert space with ‖ · ‖2 and

〈f, g〉 =

∫ b

a
f(x)g(x)w(x)dx,

Hence, p := pr⊥(f) onto Rn[x].
Weierstraß Thm. (1885) Polynomials are dense in (C([a, b]), ‖ · ‖∞)

inf
q∈Rn[x]

‖q − f‖∞ → 0 as n→∞.

The infimum is reached:

Let (E, ‖ · ‖) be a normed R-vector space, let F be a finite dimensional subspace of (E, ‖ · ‖).
For all f ∈ E, there exists p ∈ F such that ‖p− f‖ = minq∈F ‖q − f‖. Moreover, the set of
best approximations to a given f ∈ E is convex.

18 / 52

Best L∞ (Minimax) Approximation. Uniqueness

The best L2 approximation is unique, which is not always the case in the L∞ setting.

Example

Consider the interval [−1, 1], f be the constant function 1 and F = Rg where g : x→ x2.
Determine the set of best L∞ approximations to f .

Note that
min
c∈R

max
x∈[−1,1]

|1− cx2| ≥ 1,

attained for all c ∈ [0, 2].

In the case of L∞, it is necessary to introduce an additional condition known as the Haar
condition.

19 / 52

Best L∞ (Minimax) Approximation. Uniqueness

Haar Condition

Consider n+ 1 functions ϕ0, . . . , ϕn defined over [a, b]. We say that ϕ0, . . . , ϕn satisfy the
Haar condition iff

1 ϕi are continuous;

2 and the following equivalent statements hold:
(ϕi) are R-linearly independent and any p =

∑n
k=0 αkϕk 6= 0 has at most n distinct zeros

in [a, b].

for all x0, x1, . . . , xn ∈ [a, b],∣∣∣∣∣∣∣∣
ϕ0(x0) · · · ϕn(x0)

...
...

ϕ0(xn) · · · ϕn(xn)

∣∣∣∣∣∣∣∣ = 0 ⇔ ∃i 6= j, xi = xj ;

20 / 52

Best L∞ (Minimax) Approximation. Uniqueness

A set of functions that satisfy the Haar condition is called a Chebyshev system. The prototype
example is ϕi(x) = xi, for which we have∣∣∣∣∣∣∣

ϕ0(x0) · · · ϕn(x0)
...

...
ϕ0(xn) · · · ϕn(xn)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1 · · · xn0
...

...
1 · · · xnn

∣∣∣∣∣∣∣ = Vn =
∏

06i<j6n

(xj − xi).

21 / 52

Best L∞ (Minimax) Approximation. Uniqueness

Alternation Theorem. Kirchberger (1902)

Let {ϕ0, . . . , ϕn} be a Chebyshev system over [a, b]. Let f ∈ C([a, b]).
A generalized polynomial p =

∑n
k=0 αkϕk is the best approximation to f iff

there exist n+ 2 points a 6 x0 < x1 < · · · < xn+1 6 b such that, for all k,

f(xk)− p(xk) = (−1)k(f(x0)− p(x0)) = ±‖f − p‖∞.

Example error plot:

best approximation p ⇔ error f − p has at least n+ 2 extrema, all global and with alternating
signs.

 An iterative algorithm due to Remez(1934) approximates p.

22 / 52

Best L∞ (Minimax) Approximation. Uniqueness

Alternation Theorem. Kirchberger (1902)

Let {ϕ0, . . . , ϕn} be a Chebyshev system over [a, b]. Let f ∈ C([a, b]).
A generalized polynomial p =

∑n
k=0 αkϕk is the best approximation to f iff

there exist n+ 2 points a 6 x0 < x1 < · · · < xn+1 6 b such that, for all k,

f(xk)− p(xk) = (−1)k(f(x0)− p(x0)) = ±‖f − p‖∞.

Example error plot:

best approximation p ⇔ error f − p has at least n+ 2 extrema, all global and with alternating
signs.

 An iterative algorithm due to Remez(1934) approximates p.
22 / 52

Remez algorithm

Algorithm

Input: An interval [a, b], a function f ∈ C([a, b]), a natural integer n, a Chebyshev system
{ϕk}06k6n, a tolerance ∆.
Output: An approx of degree n-minimax polynomial of f on the system {ϕk}0≤k≤n.

Choose n+ 2 points x0 < x1 < · · · < xn+1 in [a, b], δ ← 1, ε← 0.

WHILE δ > ∆|ε|
Determine the solutions a0, . . . , an and ε of the linear system

n∑
k=0

akϕk(xj)− f(xj) = (−1)jε, j = 0, . . . , n+ 1.

Choose xnew ∈ [a, b] such that

‖p− f‖∞ = |p(xnew)− f(xnew)|,with p =
n∑

k=0

akϕk.

Replace one of the xi with xnew, in such a way that the sign of p− f alternates at the
points of the resulting discretization x0,new, . . . , xn+1,new.
δ ← |p(xnew)− f(xnew)| − |ε|.

Return p.

Keep calm and (don’t) read, a step-by-step demo follows!

23 / 52

Truncated Polynomials

Standard Functions Implementation Coefficients encoded on finite (constrained) format.

Let m = (mi)0≤i≤n a finite sequence of rational integers. Let

Pmn = {q = q0 + q1x+ · · · + qnx
n ∈ Rn[X]; qi integer multiple of 2−mi , ∀i}.

Question: find p? ∈ Pmn which minimizes ||f − q||, q ∈ Pmn .

First idea. Remez → p(x) = p0 + p1x+ · · · + pnxn. Every pi rounded to âi/2mi , the

nearest integer multiple of 2−mi → p̂(x) =
â0

2m0
+

â1

2m1
x+ · · · +

ân

2mn
xn.

Problem: p̂ not necessarily a minimax approx. of f among the polynomials of Pmn .

24 / 52

Truncated Polynomials

Standard Functions Implementation Coefficients encoded on finite (constrained) format.

Let m = (mi)0≤i≤n a finite sequence of rational integers. Let

Pmn = {q = q0 + q1x+ · · · + qnx
n ∈ Rn[X]; qi integer multiple of 2−mi , ∀i}.

Question: find p? ∈ Pmn which minimizes ||f − q||, q ∈ Pmn .

First idea. Remez → p(x) = p0 + p1x+ · · · + pnxn. Every pi rounded to âi/2mi , the

nearest integer multiple of 2−mi → p̂(x) =
â0

2m0
+

â1

2m1
x+ · · · +

ân

2mn
xn.

Problem: p̂ not necessarily a minimax approx. of f among the polynomials of Pmn .

24 / 52

Truncated Polynomials

Standard Functions Implementation Coefficients encoded on finite (constrained) format.

Let m = (mi)0≤i≤n a finite sequence of rational integers. Let

Pmn = {q = q0 + q1x+ · · · + qnx
n ∈ Rn[X]; qi integer multiple of 2−mi , ∀i}.

Question: find p? ∈ Pmn which minimizes ||f − q||, q ∈ Pmn .

First idea. Remez → p(x) = p0 + p1x+ · · · + pnxn. Every pi rounded to âi/2mi , the

nearest integer multiple of 2−mi → p̂(x) =
â0

2m0
+

â1

2m1
x+ · · · +

ân

2mn
xn.

Problem: p̂ not necessarily a minimax approx. of f among the polynomials of Pmn .

24 / 52

Truncated Polynomials

Standard Functions Implementation Coefficients encoded on finite (constrained) format.

Let m = (mi)0≤i≤n a finite sequence of rational integers. Let

Pmn = {q = q0 + q1x+ · · · + qnx
n ∈ Rn[X]; qi integer multiple of 2−mi , ∀i}.

Question: find p? ∈ Pmn which minimizes ||f − q||, q ∈ Pmn .

First idea. Remez → p(x) = p0 + p1x+ · · · + pnxn. Every pi rounded to âi/2mi , the

nearest integer multiple of 2−mi → p̂(x) =
â0

2m0
+

â1

2m1
x+ · · · +

ân

2mn
xn.

Problem: p̂ not necessarily a minimax approx. of f among the polynomials of Pmn .

24 / 52

Truncated Polynomials

Standard Functions Implementation Coefficients encoded on finite (constrained) format.

Let m = (mi)0≤i≤n a finite sequence of rational integers. Let

Pmn = {q = q0 + q1x+ · · · + qnx
n ∈ Rn[X]; qi integer multiple of 2−mi , ∀i}.

Question: find p? ∈ Pmn which minimizes ||f − q||, q ∈ Pmn .

First idea. Remez → p(x) = p0 + p1x+ · · · + pnxn. Every pi rounded to âi/2mi , the

nearest integer multiple of 2−mi → p̂(x) =
â0

2m0
+

â1

2m1
x+ · · · +

ân

2mn
xn.

Problem: p̂ not necessarily a minimax approx. of f among the polynomials of Pmn .

24 / 52

Approximation of the Function cos over [0, π/4] by a Degree-3 Polynomial

Maple or Sollya tell us that the polynomial

p = 0.9998864206 + 0.00469021603x− 0.5303088665x2 + 0.06304636099x3

is ∼ the best approximant to cos. We have ε = || cos−p||[0,π/4] = 0.0001135879....

We look for a0, a1, a2, a3 ∈ Z such that

max
0≤x≤π/4

∣∣∣cosx−
(a0

212
+

a1

210
x+

a2

26
x2 +

a3

24
x3
)∣∣∣

is minimal.

The naive approach gives the polynomial

p̂ =
212

212
+

5

210
x−

34

26
x2 +

1

24
x3.

We have ε̂ = || cos−p̂||[0,π/4] = 0.00069397....

25 / 52

Approximation of the Function cos over [0, π/4] by a Degree-3 Polynomial

Maple or Sollya tell us that the polynomial

p = 0.9998864206 + 0.00469021603x− 0.5303088665x2 + 0.06304636099x3

is ∼ the best approximant to cos. We have ε = || cos−p||[0,π/4] = 0.0001135879....

We look for a0, a1, a2, a3 ∈ Z such that

max
0≤x≤π/4

∣∣∣cosx−
(a0

212
+

a1

210
x+

a2

26
x2 +

a3

24
x3
)∣∣∣

is minimal.

The naive approach gives the polynomial

p̂ =
212

212
+

5

210
x−

34

26
x2 +

1

24
x3.

We have ε̂ = || cos−p̂||[0,π/4] = 0.00069397....

25 / 52

Approximation of the Function cos over [0, π/4] by a Degree-3 Polynomial

Maple or Sollya computes a polynomial p which is ∼ the best approximant to cos. We have
ε = || cos−p||[0,π/4] = 0.0001135879....
We look for a0, a1, a2, a3 ∈ Z such that

max
0≤x≤π/4

∣∣∣cosx−
(a0

212
+

a1

210
x+

a2

26
x2 +

a3

24
x3
)∣∣∣

is minimal.
The naive approach gives the polynomial p̂ and ε̂ = || cos−p̂||[0,π/4] = 0.00069397...

But the
best “truncated” approximant:

p? =
4095

212
+

6

210
x−

34

26
x2 +

1

24
x3

which gives || cos−p?||[0,π/4] = 0.0002441406250.

In this example, we gain − log2(0.35) ≈ 1.5 bits of accuracy.

26 / 52

Approximation of the Function cos over [0, π/4] by a Degree-3 Polynomial

Maple or Sollya computes a polynomial p which is ∼ the best approximant to cos. We have
ε = || cos−p||[0,π/4] = 0.0001135879....
We look for a0, a1, a2, a3 ∈ Z such that

max
0≤x≤π/4

∣∣∣cosx−
(a0

212
+

a1

210
x+

a2

26
x2 +

a3

24
x3
)∣∣∣

is minimal.
The naive approach gives the polynomial p̂ and ε̂ = || cos−p̂||[0,π/4] = 0.00069397... But the
best “truncated” approximant:

p? =
4095

212
+

6

210
x−

34

26
x2 +

1

24
x3

which gives || cos−p?||[0,π/4] = 0.0002441406250.

In this example, we gain − log2(0.35) ≈ 1.5 bits of accuracy.

26 / 52

Approaches for best "truncated" approximants

Linear programming: tackle degree-8 or 10 polynomials: good for hardware-oriented
applications, not satisfying for software-oriented.

Lattice Basis Reduction: much faster and more efficient, gives a very good approximant
(e.g. provides practical gains of 16 bits in double precision implementation of arcsin
function).

Works of N. Brisebarre, S. Chevillard, A. Tisserand, S. Torres.

Nice implementation in Sollya

27 / 52

Implementation of Standard Functions

Step 0. Computation of hardest-to-round cases.

Step 1. Argument reduction f(y), y ∈ [a, b].

Step 2. Computation of p, a “machine-efficient” polynomial approximation of f .

Step 3. Computation of a rigorous approximation error bound ||f − p||∞

28 / 52

Implementation of Standard Functions

Step 3. Computation of a rigorous approximation error bound ||f − p||∞

Example

f(x) = e1/ cos(x), x ∈ [0, 1], p(x) =
∑10
i=0 cix

i, ε(x) = f(x)− p(x) s.t.
‖ε‖∞ = supx∈[a, b]{|ε(x)|} is as small as possible (Remez algorithm)

29 / 52

Rigorous Computing Tools

1. Interval arithmetic (IA)
Each interval = pair of floating-point numbers
(multiple precision IA libraries exist, e.g. MPFI∗)

π ∈ [3.1415, 3.1416]
Interval Arithmetic Operations
Eg. [1, 2] + [−3, 2] = [−2, 4]
Range bounding for functions

 Overestimation

Eg.

∗http://gforge.inria.fr/projects/mpfi/

30 / 52

http://gforge.inria.fr/projects/mpfi/

Rigorous Computing Tools

1. Interval arithmetic (IA)
Each interval = pair of floating-point numbers
(multiple precision IA libraries exist, e.g. MPFI∗)
π ∈ [3.1415, 3.1416]

Interval Arithmetic Operations
Eg. [1, 2] + [−3, 2] = [−2, 4]
Range bounding for functions

 Overestimation

Eg.

∗http://gforge.inria.fr/projects/mpfi/

30 / 52

http://gforge.inria.fr/projects/mpfi/

Rigorous Computing Tools

1. Interval arithmetic (IA)
Each interval = pair of floating-point numbers
(multiple precision IA libraries exist, e.g. MPFI∗)
π ∈ [3.1415, 3.1416]
Interval Arithmetic Operations
Eg. [1, 2] + [−3, 2] = [−2, 4]

Range bounding for functions

 Overestimation

Eg.

∗http://gforge.inria.fr/projects/mpfi/

30 / 52

http://gforge.inria.fr/projects/mpfi/

Rigorous Computing Tools

1. Interval arithmetic (IA)
Each interval = pair of floating-point numbers
(multiple precision IA libraries exist, e.g. MPFI∗)
π ∈ [3.1415, 3.1416]
Interval Arithmetic Operations
Eg. [1, 2] + [−3, 2] = [−2, 4]
Range bounding for functions

 Overestimation

Eg. x ∈ [−1, 2], f(x) = x2 − x+ 1
F (X) = X2 −X + 1
F ([−1, 2]) = [−1, 2]2 − [−1, 2] + [1, 1]
F ([−1, 2]) = [0, 4]− [−1, 2] + [1, 1]
F ([−1, 2]) = [−1, 6]

x ∈ [−1, 2], f(x) ∈ [−1, 6], but Im(f) = [3/4, 3] Overestimation

∗http://gforge.inria.fr/projects/mpfi/

30 / 52

http://gforge.inria.fr/projects/mpfi/

Rigorous Computing Tools

1. Interval arithmetic (IA)
Each interval = pair of floating-point numbers
(multiple precision IA libraries exist, e.g. MPFI∗)
π ∈ [3.1415, 3.1416]
Interval Arithmetic Operations
Eg. [1, 2] + [−3, 2] = [−2, 4]
Range bounding for functions

 Overestimation

Eg. x ∈ [−1, 2], f(x) = x2 − x+ 1
F (X) = X2 −X + 1
F ([−1, 2]) = [−1, 2]2 − [−1, 2] + [1, 1]
F ([−1, 2]) = [0, 4]− [−1, 2] + [1, 1]
F ([−1, 2]) = [−1, 6]
x ∈ [−1, 2], f(x) ∈ [−1, 6], but Im(f) = [3/4, 3] Overestimation

∗http://gforge.inria.fr/projects/mpfi/

30 / 52

http://gforge.inria.fr/projects/mpfi/

Rigorous Computing Tools

1. Interval arithmetic (IA)
Each interval = pair of floating-point numbers
(multiple precision IA libraries exist, e.g. MPFI∗)
π ∈ [3.1415, 3.1416]
Interval Arithmetic Operations
Eg. [1, 2] + [−3, 2] = [−2, 4]
Range bounding for functions Overestimation
Eg. x ∈ [−1, 1], f(x) = e1/ cos(x) − 2.8114− 3.411x4

∗http://gforge.inria.fr/projects/mpfi/

30 / 52

http://gforge.inria.fr/projects/mpfi/

Rigorous Computing Tools

1. Interval arithmetic (IA)
Each interval = pair of floating-point numbers
(multiple precision IA libraries exist, e.g. MPFI∗)
π ∈ [3.1415, 3.1416]
Interval Arithmetic Operations
Eg. [1, 2] + [−3, 2] = [−2, 4]
Range bounding for functions Overestimation
Eg. x ∈ [−1, 1], f(x) = e1/ cos(x) − 2.8114− 3.411x4

∗http://gforge.inria.fr/projects/mpfi/

30 / 52

http://gforge.inria.fr/projects/mpfi/

Rigorous Computing Tools

1. Interval arithmetic (IA)
Each interval = pair of floating-point numbers
(multiple precision IA libraries exist, e.g. MPFI∗)
π ∈ [3.1415, 3.1416]
Interval Arithmetic Operations
Eg. [1, 2] + [−3, 2] = [−2, 4]
Range bounding for functions Overestimation
Eg. x ∈ [−1, 1], f(x) = e1/ cos(x) − 2.8114− 3.411x4

∗http://gforge.inria.fr/projects/mpfi/

30 / 52

http://gforge.inria.fr/projects/mpfi/

Rigorous Computing Tools

1. Interval arithmetic (IA)
Each interval = pair of floating-point numbers
(multiple precision IA libraries exist, e.g. MPFI∗)
π ∈ [3.1415, 3.1416]
Interval Arithmetic Operations
Eg. [1, 2] + [−3, 2] = [−2, 4]
Range bounding for functions Overestimation
Eg. x ∈ [−1, 1], f(x) = e1/ cos(x) − 2.8114− 3.411x4

∗http://gforge.inria.fr/projects/mpfi/

30 / 52

http://gforge.inria.fr/projects/mpfi/

Rigorous Computing Tools

1. Interval arithmetic (IA)
Each interval = pair of floating-point numbers
(multiple precision IA libraries exist, e.g. MPFI∗)
π ∈ [3.1415, 3.1416]
Interval Arithmetic Operations
Eg. [1, 2] + [−3, 2] = [−2, 4]
Range bounding for functions Overestimation
Eg. x ∈ [−1, 1], f(x) = e1/ cos(x) − 2.8114− 3.411x4

∗http://gforge.inria.fr/projects/mpfi/

30 / 52

http://gforge.inria.fr/projects/mpfi/

When Interval Arithmetic does not suffice:
Computing supremum norms of approximation errors

f(x) = e1/ cos(x), x ∈ [0, 1], p(x) =
∑10
i=0 cix

i, ε(x) = f(x)− p(x) s.t.
‖ε‖∞ = supx∈[a, b]{|ε(x)|} is as small as possible (Remez algorithm)

Using IA, ε(x) ∈ [−233, 298], but ‖ε(x)‖∞ ' 3.8325 · 10−5

31 / 52

When Interval Arithmetic does not suffice:
Computing supremum norms of approximation errors

f(x) = e1/ cos(x), x ∈ [0, 1], p(x) =
∑10
i=0 cix

i, ε(x) = f(x)− p(x) s.t.
‖ε‖∞ = supx∈[a, b]{|ε(x)|} is as small as possible (Remez algorithm)

Using IA, ε(x) ∈ [−233, 298], but ‖ε(x)‖∞ ' 3.8325 · 10−5

31 / 52

When Interval Arithmetic does not suffice:
Computing supremum norms of approximation errors

f(x) = e1/ cos(x), x ∈ [0, 1], p(x) =
∑10
i=0 cix

i, ε(x) = f(x)− p(x) s.t.
‖ε‖∞ = supx∈[a, b]{|ε(x)|} is as small as possible (Remez algorithm)

Using IA, ε(x) ∈ [−233, 298], but ‖ε(x)‖∞ ' 3.8325 · 10−5

31 / 52

Why IA does not suffice: Overestimation

Overestimation can be reduced by using intervals of smaller width.

In this case, over [0, 1] we need 107 intervals!

32 / 52

Rigorous polynomial approximations (RPAs)

||f − p|| ≤

||f − T ||︸ ︷︷ ︸
easier to compute

+ ||T − p||︸ ︷︷ ︸
reduced dependency

f replaced with

a rigorous polynomial approximation : (T,∆)

- polynomial approximation T

- interval ∆ s. t. f(x)− T (x) ∈∆, ∀x ∈ [a, b]

33 / 52

Rigorous polynomial approximations (RPAs)

||f − p|| ≤ ||f − T ||︸ ︷︷ ︸
easier to compute

+ ||T − p||︸ ︷︷ ︸
reduced dependency

f replaced with

a rigorous polynomial approximation : (T,∆)

- polynomial approximation T

- interval ∆ s. t. f(x)− T (x) ∈∆, ∀x ∈ [a, b]

33 / 52

Rigorous polynomial approximations (RPAs)

||f − p|| ≤ ||f − T ||︸ ︷︷ ︸
easier to compute

+ ||T − p||︸ ︷︷ ︸
reduced dependency

f replaced with

a rigorous polynomial approximation : (T,∆)

- polynomial approximation T
- interval ∆ s. t. f(x)− T (x) ∈∆, ∀x ∈ [a, b]

33 / 52

Rigorous polynomial approximations (RPAs)

||f − p|| ≤ ||f − T ||︸ ︷︷ ︸
easier to compute

+ ||T − p||︸ ︷︷ ︸
reduced dependency

f replaced with a rigorous polynomial approximation : (T,∆)
- polynomial approximation T
- interval ∆ s. t. f(x)− T (x) ∈∆, ∀x ∈ [a, b]

33 / 52

Rigorous polynomial approximations (RPAs)

– Consider "sufficiently smooth" univariate functions f over [a, b].
– f replaced with a rigorous polynomial approximation : (T,∆)

(1). RPAs based on Taylor series
 Taylor Models (TMs).

(2). Certify RPAs based on best polynomial approximations: use intermediary RPAs
obtained in (1), (3).

(3). Near-best RPAs: based on Chebyshev Series
 Chebyshev Models (CMs).

f is an elementary function, e.g. exp(1/ cos(x));

f is a D-finite function, i.e. solution of an ordinary differential equation with polynomial
coefficients, e.g. exp, Airy, Bessel.

(4). Other orthogonal polynomials...

34 / 52

Rigorous polynomial approximations (RPAs)

– Consider "sufficiently smooth" univariate functions f over [a, b].
– f replaced with a rigorous polynomial approximation : (T,∆)

(1). RPAs based on Taylor series
 Taylor Models (TMs).

(2). Certify RPAs based on best polynomial approximations: use intermediary RPAs
obtained in (1), (3).

(3). Near-best RPAs: based on Chebyshev Series
 Chebyshev Models (CMs).

f is an elementary function, e.g. exp(1/ cos(x));

f is a D-finite function, i.e. solution of an ordinary differential equation with polynomial
coefficients, e.g. exp, Airy, Bessel.

(4). Other orthogonal polynomials...

34 / 52

Rigorous polynomial approximations (RPAs)

– Consider "sufficiently smooth" univariate functions f over [a, b].
– f replaced with a rigorous polynomial approximation : (T,∆)

(1). RPAs based on Taylor series
 Taylor Models (TMs).

(2). Certify RPAs based on best polynomial approximations: use intermediary RPAs
obtained in (1), (3).

(3). Near-best RPAs: based on Chebyshev Series
 Chebyshev Models (CMs).

f is an elementary function, e.g. exp(1/ cos(x));

f is a D-finite function, i.e. solution of an ordinary differential equation with polynomial
coefficients, e.g. exp, Airy, Bessel.

(4). Other orthogonal polynomials...

34 / 52

Rigorous polynomial approximations (RPAs)

– Consider "sufficiently smooth" univariate functions f over [a, b].
– f replaced with a rigorous polynomial approximation : (T,∆)

(1). RPAs based on Taylor series
 Taylor Models (TMs).

(2). Certify RPAs based on best polynomial approximations: use intermediary RPAs
obtained in (1), (3).

(3). Near-best RPAs: based on Chebyshev Series
 Chebyshev Models (CMs).

f is an elementary function, e.g. exp(1/ cos(x));

f is a D-finite function, i.e. solution of an ordinary differential equation with polynomial
coefficients, e.g. exp, Airy, Bessel.

(4). Other orthogonal polynomials...

34 / 52

Rigorous polynomial approximations (RPAs)

– Consider "sufficiently smooth" univariate functions f over [a, b].
– f replaced with a rigorous polynomial approximation : (T,∆)

(1). RPAs based on Taylor series
 Taylor Models (TMs).

(2). Certify RPAs based on best polynomial approximations: use intermediary RPAs
obtained in (1), (3).

(3). Near-best RPAs: based on Chebyshev Series
 Chebyshev Models (CMs).

f is an elementary function, e.g. exp(1/ cos(x));

f is a D-finite function, i.e. solution of an ordinary differential equation with polynomial
coefficients, e.g. exp, Airy, Bessel.

(4). Other orthogonal polynomials...

34 / 52

Taylor Models

- Consider Taylor approximations

Let n ∈ N, n+ 1 times differentiable function f over [a, b] around x0.

f(x) =
n∑
i=0

f (i)(x0)(x− x0)i

i!︸ ︷︷ ︸
T (x)

+ ∆n(x)︸ ︷︷ ︸
∆

- For obtaining ∆:

For “basic functions” (sin, cos, etc.) use Lagrange formula

For “composite functions”use a two-step procedure:
- compute models (T,∆) for all basic functions;
- apply algebraic rules with these models, instead of operations with the corresponding
functions.

35 / 52

Taylor Models

- Consider Taylor approximations
Let n ∈ N, n+ 1 times differentiable function f over [a, b] around x0.

f(x) =
n∑
i=0

f (i)(x0)(x− x0)i

i!︸ ︷︷ ︸
T (x)

+ ∆n(x)︸ ︷︷ ︸
∆

- For obtaining ∆:

For “basic functions” (sin, cos, etc.) use Lagrange formula

For “composite functions”use a two-step procedure:
- compute models (T,∆) for all basic functions;
- apply algebraic rules with these models, instead of operations with the corresponding
functions.

35 / 52

Taylor Models

- Consider Taylor approximations
Let n ∈ N, n+ 1 times differentiable function f over [a, b] around x0.

f(x) =
n∑
i=0

f (i)(x0)(x− x0)i

i!︸ ︷︷ ︸
T (x)

+ ∆n(x)︸ ︷︷ ︸
∆

- For obtaining ∆:

For “basic functions” (sin, cos, etc.) use Lagrange formula

∀x ∈ [a, b], ∃ξ ∈ [a, b] s.t. ∆n(x, ξ) =
f (n+1)(ξ)(x− x0)n+1

(n+ 1)!

For “composite functions”use a two-step procedure:
- compute models (T,∆) for all basic functions;
- apply algebraic rules with these models, instead of operations with the corresponding
functions.

35 / 52

Taylor Models

- Consider Taylor approximations
Let n ∈ N, n+ 1 times differentiable function f over [a, b] around x0.

f(x) =
n∑
i=0

f (i)(x0)(x− x0)i

i!︸ ︷︷ ︸
T (x)

+ ∆n(x)︸ ︷︷ ︸
∆

- For obtaining ∆:

For “basic functions” (sin, cos, etc.) use Lagrange formula

For “composite functions”use a two-step procedure:
- compute models (T,∆) for all basic functions;
- apply algebraic rules with these models, instead of operations with the corresponding
functions.

35 / 52

Taylor Models Algebra of RPAs

Example: fcomp(x) = exp(sin(x) + cos(x))

36 / 52

Taylor Models Algebra of RPAs

Example: fcomp(x) = exp(sin(x) + cos(x))

36 / 52

Taylor Models Algebra of RPAs

Example: fcomp(x) = exp(sin(x) + cos(x))

36 / 52

Taylor Models Algebra of RPAs

Example: fcomp(x) = exp(sin(x) + cos(x))

36 / 52

Why use a two-step procedure for composite functions?

Otherwise ∆ can be largely overestimated.

Example:

f(x) = e1/ cos x, over [0, 1], n = 13, x0 = 0.5. f(x)− T (x) ∈ [0, 4.56 · 10−3]

Automatic differentiation and Lagrange formula:
∆ = [−1.93 · 102, 1.35 · 103]

Cauchy’s Estimate
∆ = [−9.17 · 10−2, 9.17 · 10−2]

Taylor Models
∆ = [−9.04 · 10−3, 9.06 · 10−3]

37 / 52

Why use a two-step procedure for composite functions?

Otherwise ∆ can be largely overestimated.

Example:

f(x) = e1/ cos x, over [0, 1], n = 13, x0 = 0.5. f(x)− T (x) ∈ [0, 4.56 · 10−3]

Automatic differentiation and Lagrange formula:
∆ = [−1.93 · 102, 1.35 · 103]

Cauchy’s Estimate
∆ = [−9.17 · 10−2, 9.17 · 10−2]

Taylor Models
∆ = [−9.04 · 10−3, 9.06 · 10−3]

37 / 52

Why use a two-step procedure for composite functions?

Otherwise ∆ can be largely overestimated.

Example:

f(x) = e1/ cos x, over [0, 1], n = 13, x0 = 0.5. f(x)− T (x) ∈ [0, 4.56 · 10−3]

Automatic differentiation and Lagrange formula:
∆ = [−1.93 · 102, 1.35 · 103]

Cauchy’s Estimate
∆ = [−9.17 · 10−2, 9.17 · 10−2]

Taylor Models
∆ = [−9.04 · 10−3, 9.06 · 10−3]

37 / 52

Why use a two-step procedure for composite functions?

Otherwise ∆ can be largely overestimated.

Example:

f(x) = e1/ cos x, over [0, 1], n = 13, x0 = 0.5. f(x)− T (x) ∈ [0, 4.56 · 10−3]

Automatic differentiation and Lagrange formula:
∆ = [−1.93 · 102, 1.35 · 103]

Cauchy’s Estimate
∆ = [−9.17 · 10−2, 9.17 · 10−2]

Taylor Models
∆ = [−9.04 · 10−3, 9.06 · 10−3]

37 / 52

Why use a two-step procedure for composite functions?

Otherwise ∆ can be largely overestimated.

Example:

f(x) = e1/ cos x, over [0, 1], n = 13, x0 = 0.5. f(x)− T (x) ∈ [0, 4.56 · 10−3]

Automatic differentiation and Lagrange formula:
∆ = [−1.93 · 102, 1.35 · 103]

Cauchy’s Estimate
∆ = [−9.17 · 10−2, 9.17 · 10−2]

Taylor Models
∆ = [−9.04 · 10−3, 9.06 · 10−3]

37 / 52

Another L∞ (Minimax) example

Example:

f(x) = arctan(x) over [−0.9, 0.9], p(x) - minimax, degree 15,
ε(x) = p(x)− f(x), ‖ε‖∞ ' 10−8

Taylor approximations:
need a TM of degree 120 (in theory)

In practice, computed interval error
bound not sufficiently small due to
overestimation.

38 / 52

Improvement?

- Use a polynomial approximation better than Taylor:

Why?
– better convergence domains
– better compact approximations on larger domains

39 / 52

Quick Reminder: Chebyshev Polynomials

Tn(cos(θ)) = cos(nθ)

Ti+1 = 2xTi − Ti−1, T0(x) = 1, T1(x) = x

Orthogonality:∫ 1

−1

Ti(x)Tj(x)
√

1− x2
dx =


0 if i 6= j
π if i = 0
π
2

otherwise

n−1∑
k=0

Ti(xk)Tj(xk) =


0 if i 6= j
n if i = 0
n
2

otherwise

Chebyshev nodes: n distinct real roots in [−1, 1] of Tn

xk = cos
(

(k+1/2)π
n

)
, k = 0, . . . , n− 1.

40 / 52

Quick Reminder: Chebyshev Polynomials

Tn(cos(θ)) = cos(nθ)

Ti+1 = 2xTi − Ti−1, T0(x) = 1, T1(x) = x

Orthogonality:∫ 1

−1

Ti(x)Tj(x)
√

1− x2
dx =


0 if i 6= j
π if i = 0
π
2

otherwise

n−1∑
k=0

Ti(xk)Tj(xk) =


0 if i 6= j
n if i = 0
n
2

otherwise

Chebyshev nodes: n distinct real roots in [−1, 1] of Tn

xk = cos
(

(k+1/2)π
n

)
, k = 0, . . . , n− 1.

40 / 52

Quick Reminder: Chebyshev Polynomials

Tn(cos(θ)) = cos(nθ)

Ti+1 = 2xTi − Ti−1, T0(x) = 1, T1(x) = x

Orthogonality:∫ 1

−1

Ti(x)Tj(x)
√

1− x2
dx =


0 if i 6= j
π if i = 0
π
2

otherwise

n−1∑
k=0

Ti(xk)Tj(xk) =


0 if i 6= j
n if i = 0
n
2

otherwise

Chebyshev nodes: n distinct real roots in [−1, 1] of Tn

xk = cos
(

(k+1/2)π
n

)
, k = 0, . . . , n− 1.

40 / 52

Quick Reminder: Chebyshev Polynomials

Tn(cos(θ)) = cos(nθ)

Ti+1 = 2xTi − Ti−1, T0(x) = 1, T1(x) = x

Orthogonality:∫ 1

−1

Ti(x)Tj(x)
√

1− x2
dx =


0 if i 6= j
π if i = 0
π
2

otherwise

n−1∑
k=0

Ti(xk)Tj(xk) =


0 if i 6= j
n if i = 0
n
2

otherwise

Chebyshev nodes: n distinct real roots in [−1, 1] of Tn

xk = cos
(

(k+1/2)π
n

)
, k = 0, . . . , n− 1.

40 / 52

Quick Reminder: Chebyshev Polynomials

Tn(cos(θ)) = cos(nθ)

Ti+1 = 2xTi − Ti−1, T0(x) = 1, T1(x) = x

Orthogonality:∫ 1

−1

Ti(x)Tj(x)
√

1− x2
dx =


0 if i 6= j
π if i = 0
π
2

otherwise

n−1∑
k=0

Ti(xk)Tj(xk) =


0 if i 6= j
n if i = 0
n
2

otherwise

Chebyshev nodes: n distinct real roots in [−1, 1] of Tn

xk = cos
(

(k+1/2)π
n

)
, k = 0, . . . , n− 1.

40 / 52

Chebyshev Series vs Taylor Series

Two approximations of f :

by Taylor series

f =

+∞∑
n=0

cnx
n, cn =

f (n)(0)

n!
,

or by Chebyshev series

f =

+∞∑
n=−∞

tnTn(x),

tn =
1

π

∫ 1

−1
Tn(t)

f(t)
√

1− t2
dt.

−1 −0.5 0 0.5 1
x

−0.05

−0.025

0.025

0.05
Error of approximation for exp(x)

Taylor expansion
of order 3

Chebyshev expansion
of order 3

41 / 52

Chebyshev Series vs Taylor Series II

x

Bad approximation outside its circle of convergence

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0.5

1

1.5

arctan(2x)

Taylor approximation

42 / 52

Chebyshev Series vs Taylor Series II

x

Approximation of arctan(2x) by Chebyshev expansion of degree 11

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0.5

1

1.5

arctan(2x)

Chebyshev approximation

Taylor approximation

42 / 52

Chebyshev Series vs Taylor Series III

Convergence Domains :

For Taylor series:
disc centered at x0 = 0 which avoids all
the singularities of f

For Chebyshev series:
elliptic disc with foci at ±1 which
avoids all the singularities of f

Taylor series can not converge over entire [−1, 1] unless all singularities lie outside the
unit circle.

X Chebyshev series converge over entire [−1, 1] as soon as there are no real singularities in
[−1, 1].

43 / 52

Chebyshev Series vs Taylor Series III

Convergence Domains :

For Taylor series:
disc centered at x0 = 0 which avoids all
the singularities of f

For Chebyshev series:
elliptic disc with foci at ±1 which
avoids all the singularities of f

Taylor series can not converge over entire [−1, 1] unless all singularities lie outside the
unit circle.

X Chebyshev series converge over entire [−1, 1] as soon as there are no real singularities in
[−1, 1].

43 / 52

Chebyshev Series vs Taylor Series III

Convergence Domains :

For Taylor series:
disc centered at x0 = 0 which avoids all
the singularities of f

For Chebyshev series:
elliptic disc with foci at ±1 which
avoids all the singularities of f

Taylor series can not converge over entire [−1, 1] unless all singularities lie outside the
unit circle.

X Chebyshev series converge over entire [−1, 1] as soon as there are no real singularities in
[−1, 1].

43 / 52

Chebyshev Series vs Taylor Series IV

Truncation Error :

Taylor series, Lagrange formula:

∀x ∈ [−1, 1], ∃ξ ∈ [−1, 1] s.t.

f(x)− T (x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1.

Chebyshev series, Bernstein-like formula:

∀x ∈ [−1, 1], ∃ξ ∈ [−1, 1] s.t.

f(x)− P (x) =
f (n+1)(ξ)

2n(n+ 1)!
.

[X] We should have an improvement of 2n in the width of the Chebyshev truncation error.

44 / 52

Chebyshev Series vs Taylor Series IV

Truncation Error :

Taylor series, Lagrange formula:

∀x ∈ [−1, 1], ∃ξ ∈ [−1, 1] s.t.

f(x)− T (x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1.

Chebyshev series, Bernstein-like formula:

∀x ∈ [−1, 1], ∃ξ ∈ [−1, 1] s.t.

f(x)− P (x) =
f (n+1)(ξ)

2n(n+ 1)!
.

[X] We should have an improvement of 2n in the width of the Chebyshev truncation error.

44 / 52

Chebyshev Series vs Taylor Series IV

Truncation Error :

Taylor series, Lagrange formula:

∀x ∈ [−1, 1], ∃ξ ∈ [−1, 1] s.t.

f(x)− T (x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1.

Chebyshev series, Bernstein-like formula:

∀x ∈ [−1, 1], ∃ξ ∈ [−1, 1] s.t.

f(x)− P (x) =
f (n+1)(ξ)

2n(n+ 1)!
.

[X] We should have an improvement of 2n in the width of the Chebyshev truncation error.

44 / 52

Quality of approximation of truncated Chebyshev series compared to best
polynomial approximation

It is well-known that truncated Chebyshev series πd(f) are near-best uniform approximations
[Chap 5.5, Mason & Handscomb 2003].

Let p∗d is the polynomial of degree at most d that minimizes
‖f − p‖∞ = sup−1≤x≤1 |f(x)− p(x)|.

‖f − πd(f)‖∞ 6
(4

π2
log d+O(1)

)
︸ ︷︷ ︸

Λd

‖f − p∗d‖∞ (1)

Λ10 = 2.22...→ we lose at most 2 bits

Λ30 = 2.65...→ we lose at most 2 bits

Λ100 = 3.13...→ we lose at most 3 bits

Λ500 = 3.78...→ we lose at most 3 bits

45 / 52

Quality of approximation of truncated Chebyshev series compared to best
polynomial approximation

It is well-known that truncated Chebyshev series πd(f) are near-best uniform approximations
[Chap 5.5, Mason & Handscomb 2003].

Let p∗d is the polynomial of degree at most d that minimizes
‖f − p‖∞ = sup−1≤x≤1 |f(x)− p(x)|.

‖f − πd(f)‖∞ 6
(4

π2
log d+O(1)

)
︸ ︷︷ ︸

Λd

‖f − p∗d‖∞ (1)

Λ10 = 2.22...→ we lose at most 2 bits

Λ30 = 2.65...→ we lose at most 2 bits

Λ100 = 3.13...→ we lose at most 3 bits

Λ500 = 3.78...→ we lose at most 3 bits

45 / 52

Quality of approximation of truncated Chebyshev series compared to best
polynomial approximation

It is well-known that truncated Chebyshev series πd(f) are near-best uniform approximations
[Chap 5.5, Mason & Handscomb 2003].

Let p∗d is the polynomial of degree at most d that minimizes
‖f − p‖∞ = sup−1≤x≤1 |f(x)− p(x)|.

‖f − πd(f)‖∞ 6
(4

π2
log d+O(1)

)
︸ ︷︷ ︸

Λd

‖f − p∗d‖∞ (1)

Λ10 = 2.22...→ we lose at most 2 bits

Λ30 = 2.65...→ we lose at most 2 bits

Λ100 = 3.13...→ we lose at most 3 bits

Λ500 = 3.78...→ we lose at most 3 bits

45 / 52

Quality of approximation of truncated Chebyshev series compared to best
polynomial approximation

It is well-known that truncated Chebyshev series πd(f) are near-best uniform approximations
[Chap 5.5, Mason & Handscomb 2003].

Let p∗d is the polynomial of degree at most d that minimizes
‖f − p‖∞ = sup−1≤x≤1 |f(x)− p(x)|.

‖f − πd(f)‖∞ 6
(4

π2
log d+O(1)

)
︸ ︷︷ ︸

Λd

‖f − p∗d‖∞ (1)

Λ10 = 2.22...→ we lose at most 2 bits

Λ30 = 2.65...→ we lose at most 2 bits

Λ100 = 3.13...→ we lose at most 3 bits

Λ500 = 3.78...→ we lose at most 3 bits

45 / 52

Chebyshev truncations are near-best : Example

x

ex − (1.0000 + 0.9973x
+0.4988x2 + 0.1773x3

+0.0441x4)

ex − (1, 2660T0(x) + 1, 1303T1(x)
+ 0, 2714T2(x) + 0, 0443T3(x)
+ 0, 0054T4(x))

−1 −1/2 1/2 1

−5.10−3

5.10−3

Chebyshev truncation of degree 4

Best approximant of degree 4

46 / 52

Chebyshev Series vs Taylor Series (9gag version)

47 / 52

Computing the coefficients

Chebyshev series of f =

+∞∑
i=−∞

tiTi(x) :

– Orthogonality ti =
1

π

∫ 1

−1
Ti(t)

f(t)
√

1− t2
dt TCS

– Discrete orthogonality t̃i =
n∑
k=0

1
n+1

f(xk)Ti(xk)

 Chebyshev Interpolant (CI)

48 / 52

Computing the coefficients

Chebyshev series of f =

+∞∑
i=−∞

tiTi(x) :

– Orthogonality ti =
1

π

∫ 1

−1
Ti(t)

f(t)
√

1− t2
dt TCS

– Discrete orthogonality t̃i =
n∑
k=0

1
n+1

f(xk)Ti(xk) Chebyshev Interpolant (CI)

48 / 52

Computing the coefficients

Chebyshev series of f =

+∞∑
i=−∞

tiTi(x) :

– Orthogonality ti =
1

π

∫ 1

−1
Ti(t)

f(t)
√

1− t2
dt TCS

– Discrete orthogonality t̃i =
n∑
k=0

1
n+1

f(xk)Ti(xk) Chebyshev Interpolant (CI)

Remark: TCS or CI?

CI: when f is elementary, evaluating f at Chebyshev nodes is easy

TCS: when f is given by LODE

48 / 52

Another L∞ (Minimax) example

Example:

f(x) = arctan(x) over [−0.9, 0.9], p(x) - minimax, degree 15,
ε(x) = p(x)− f(x), ‖ε‖∞ ' 10−8

Taylor approximations:
need a TM of degree 120 (in theory)

In practice, computed interval error
bound not sufficiently small due to
overestimation.
A CM of degree 60 works.

49 / 52

CMs vs. TMs

Comparison between remainder bounds for several functions:
f(x), I, n CM Timing (ms) TM Timing (ms)
sin(x), [3, 4], 10 1.19 · 10−14 4 1.22 · 10−11 2

arctan(x), [−0.25, 0.25], 15 7.89 · 10−15 10 2.58 · 10−10 4

arctan(x), [−0.9, 0.9], 15 5.10 · 10−3 14 1.67 · 102 7

exp(1/ cos(x)), [0, 1], 14 5.22 · 10−7 31 9.06 · 10−3 14
exp(x)

log(2+x) cos(x)
, [0, 1], 15 4.86 · 10−9 38 1.18 · 10−3 19

sin(exp(x)),[−1, 1], 10 2.56 · 10−5 7 2.96 · 10−2 4

50 / 52

Ready to implement your favorite function in C?

LIBMs

IEEE 754-2008 standard

Automatic approach for many
functions

Best FPMinimaxApprox

Certifying
Approx & Rounding Errors

51 / 52

Many thanks for N. Brisebarre and B. Salvy for useful sources and resources related to their
course on approximation http://www.ens-lyon.fr/LIP/AriC/M2R/ASNA/

52 / 52

http://www.ens-lyon.fr/LIP/AriC/M2R/ASNA/

	Introduction
	Context: What do you mean by compute?

	FP Arithmetic
	Correctly rounded functions

	Polynomial Approximation
	Truncated Polynomials
	Supnorms
	Rigorous Computing Tools
	Taylor Models
	Chebyshev Models

