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o Numerical Computing: floating-point arithmetic
— High Performance Computing (MultiCores, GPUs, FPGAs):

o Fast numerical solutions: global optimization, systems of differential equations, integration
o Usually, solutions lack certification of the output accuracy
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o Numerical Computing: floating-point arithmetic
— High Performance Computing (MultiCores, GPUs, FPGAs):

o Fast numerical solutions: global optimization, systems of differential equations, integration
o Usually, solutions lack certification of the output accuracy

A catastrophic cancellation example:
Evaluate

(333.75 — a?)b8 + a? (11a%b? — 121b* — 2) +5.56°  + %

for a = 77617.0, b = 33096.0 (Rump '88)

Results of C program, gcc, Linux:

1.1726039400531787 in binary64;

1.1726039400531786318588349045201838 in binary128. Exact result is —0.827396. . ..
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o Fast numerical solutions: global optimization, systems of differential equations, integration
o Usually, solutions lack certification of the output accuracy
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Evaluate
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— Computer Algebra Systems (eg. Maple):

o Exact solution, e.g. — 2éISZ
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o Usually, solutions lack certification of the output accuracy

A catastrophic cancellation example:
Evaluate

(333.75 — a2)b® + a2 (11a%6% — 1216* — 2) + 5.56°  + %

5.56% — 2 — 5.5b%~ eval to 0 by cancellation

for a = 77617.0, b = 33096.0 (Rump '88)

Results of C program, gcc, Linux:

1.1726039400531787 in binary64;

1.1726039400531786318588349045201838 in binary128. Exact result is —0.827396. . ..
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1st Case Study: Machine Implementation of Elementary Functions

Constrained minimax polynomial approximation

Find c2, c3 € Z such that

max
_2—12st2—12

[ 3 3
expzf(1+z+2§z +2§x)’

is minimal.
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Find c2, c3 € Z such that

max
_2—12st2—12

[ 3 3
expzf(1+z+2§z +2§x)’

is minimal.

Best truncated polynomial:
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1st Case Study: Machine Implementation of Elementary Functions

Constrained minimax polynomial approximation

Find c2, c3 € Z such that

c2 o c3 3
max expr — (l+ x4+ —z°+ —=z=
—o-12<,<0-12 253 253

is minimal.
Best truncated polynomial:

4503599645901977 2 4503599645901977 4
T T

* —
pi(z)=1+a+ 253 252

Approx error e(z) := expx — p*(x) is (with Maple, 16 digits) :

1.x 10716
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1st Case Study: Machine Implementation of Elementary Functions

Constrained minimax polynomial approximation

Find c2, c3 € Z such that

c2 o c3 3
max expr — (l+ x4+ —z°+ —=z=
—o-12<,<0-12 253 253

is minimal.

Best truncated polynomial:

4503599645901977 2 4503599645901977 4
T T

* —
pi(z)=1+a+ 253 252

3e-17

Approx error e(z) := expx — p*(z) is (with Sollya):

1617 |

Ae17

2017

3e-17

-0.0002 -0.00015 -0.0001 -5e-05 o 5e-05  0.0001 0.00015 0.0002
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1st Case Study: Machine Implementation of Elementary Functions

Constrained minimax polynomial approximation

Find c2, c3 € Z such that

c2 o c3 3
max expr — (l+ x4+ —z°+ —=z=
—o-12<,<0-12 253 253
is minimal.

Best truncated polynomial:

4503599645901977 2 4503599645901977 4
T T

* —
pi(z)=1+a+ 253 252

llya):
rove that:

3e-17

Approx error (z) := expx — p*(x) is (with S|9

le(2)]

<258-10717

lleflf—a-12:0-12) =

max
,2712§IS2—12

1617 |

Ae17

~ 54 bits accuracy.

2017

3e-17 L L L L L L L L L
00002 -0.00015 -0.0001 -5¢-05 0  5e-05 00001 0.00015 0.0002
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2nd Case Study: Chebyshev Series of D-finite Functions

Taylor series: exp =Y, ,1 C

Recurrence for coefficients:

u(n

u(n+1) = |
u(0) = 1 1/00 = 1
u(l) =1 1/11 =1
w(2) = 0.5 1/21 =05

uw(50) ~ 3.28 10755 1/50! ~ 3.28 - 10765
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2nd Case Study: Chebyshev Series of D-finite Functions

Taylor series: exp = 3 L " Chebyshev series: exp = Y I, (1)Th(x)

n!*

Ry e — Recurrence for coefficients:
u(n) u(n + 1) = —2nu(n) + u(n — 1)
u(n+1) =
n+1
u(0) =1 1/00=1 u(0) = 1.266 Io(1) ~ 1.266
u(l) =1 /1 =1 u(1) = 0.565 I (1) = 0.565
u(2) =0.5 1/2!=05 u(2) ~ 0.136 Ir(1) ~ 0.136
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2nd Case Study: Chebyshev Series of D-finite Functions

L .n Chebyshev series: exp = Y I, (1)Th(x)

nl

Taylor series: exp = Y

R N u— - —— Recurrence for coefficients:

w(nt 1) = u(n) u(n + 1) = —2nu(n) + u(n — 1)
n+1
u(0) =1 1/0=1 u(0) = 1.266 Io(1) ~ 1.266
w(l) =1 =1 u(1) = 0.565 I(1) ~ 0.565
w(2) = 0.5 1/21 = 0.5 u(2) ~ 0.136 I>(1) ~ 0.136

u(50) ~ 3.28-107%%  1/501 ~3.28-107%°  4(50) ~ 4.450 - 1057  I5o(1) A~ 2.934 - 1030

More subtle cause:

Convergent and Divergent Solutions of the Recurrence u(n + 1) = —2nu(n) + u(n — 1):

If u(n) is solution, then there exists another solution v(n) ~ Mol

3/ B2



3rd Case Study: Cancellation in finite precision power series evaluation

oo (—1 z",,z'
Example: exp(—z) = > ( 3 :
i=0 (2

exp(—20) = 1-20...+1.66-107—1.23 - 10"+ ... 4+1.19- 108 -3.45-107°. ..
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3rd Case Study: Cancellation in finite precision power series evaluation

oo (—1)ig?
Example: exp(—z) = >, (#

=0 7!

exp(—20) = 1-20...+1.66 - 107—1.23 - 1074 ... 4+1.19-10"8-3.45- 1072 ..
Values of ‘(_12# ’, compared to exp(—20) ~ 2.06 - 10~2:
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3rd Case Study: Cancellation in finite precision power series evaluation

0 (—l)i;ri

Example: exp(—z) = >, A
=0 2:
exp(—20) = 1-20...+1.66 - 107—1.23 - 1074 ... 4+1.19-10"8-3.45- 1072 ..

Values of ‘(_12# ’, compared to exp(—20) ~ 2.06 - 10~2:

4.x107 °°
3.x 1079 °
. ’ max 2[0,’
o Lost Digits: ~ log ————
2% 107 . exp(—20)
e . ~ 54 bits lost, hence binary64 result: 0.01583705682
1.x 1074
2‘0 3‘0 40 50 60
4/ 52




Safety-critical space applications

@ 2009, Feb. 10: collision between Iridium 33 and Cosmos 2251, although predicted
minimum distance of close approach was of 584m.

Figure: Animation of Iridium 33 and Kosmos 2251’s collision; GNU Free Documentation, Wikipedia

o Collision probabilities estimated by reliable and efficient integral computations...
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Computational methods (ultimate efficiency required)
are a basic building brick

Le walking*
E) A WILD LEGO PIECE APPEARS!
J

Prying te hold back the tears*

Accidentally steps on Lego piece”

(courtesy 9gag. com)
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Floating point (FP) Arithmetic |

A real number is approximated in machine by a rational z:

z=(-1)° xm x 8¢

B is the radix (usually 8 = 2)
s is a sign bit

m is the mantissa, a rational number of n,, digits in radix 3:
m = do,d1dz...dp,, -1

e is the exponent, a signed integer on ne bits

HANDBOOK o

FLOAT

RoRA oF DA

| T

oA D
i L
o e

s ns
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|[EEE 754-2008 standard

Most common formats

o Single (binary32) precision format (p = 24):

23
[s[ e ] m \
@ Double (binary64) precision format (p = 53):
1 11 52
[s[ e ] m

— Implicit bit that is not stored.
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|[EEE 754-2008 standard

o Single (binary32) precision format (p = 24):

138 23
[s[ e | m |

@ Double (binary64) precision format (p = 53):

1 52
[s[ e | m |

— Implicit bit that is not stored.

Rounding modes

@ 4 rounding modes: RD, RU, RZ, RN

o Correct rounding for: +, —, X, +, Vi (return what we would get by infinitely precise
operations followed by rounding).

o Portability, determinism.
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Multiple vs. standard precision

Standard precision ~» hardware ~ fast
Multiple precision ~~ software ~» 100x slower (typically)
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Multiple vs. standard precision

Standard precision ~» hardware ~ fast
Multiple precision ~~ software ~» 100x slower (typically)

Two ways of representing numbers in extended precision

o multiple-digit representation - a number is represented by a sequence of digits coupled
with a single exponent (Ex. GNU MPFR, ARPREC);

s M e
%7 4% 2
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Multiple vs. standard precision

Standard precision ~» hardware ~ fast
Multiple precision ~~ software ~» 100x slower (typically)

Two ways of representing numbers in extended precision

o multiple-digit representation - a number is represented by a sequence of digits coupled
with a single exponent (Ex. GNU MPFR, ARPREC);

s M e
%7 4% 2

o multiple-term representation - a number is expressed as the unevaluated sum of several
FP numbers (also called a FP expansion) (Ex. QD, CAMPARY).

Uq
(2227722 K258

X

Up—1
W22 727

Example: 7 in double-double

po = 11.0010010000111111011010101000100010000101101000110002,

and
p1 = 1.00011010011000100110001100110001010001011100000001115 x 273,

po + p1 < 107 bits FP approx.
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Floating point (FP) Arithmetic Il

v Since 1985, IEEE-754 standard for FP arithmetic requests correct rounding for :
+7 = X, =, \/
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https://gforge.inria.fr/scm/browser.php?group_id=5929&extra=crlibm

Floating point (FP) Arithmetic Il

v Since 1985, IEEE-754 standard for FP arithmetic requests correct rounding for :
+7 — X, +7 \/
v Correct Rounding: An operation whose entries are FP
numbers must return what we would get by infinitely precise operation followed by rounding.

RN(f(=))

floating-point number / midpoint number
f(x) lives in this interval, Iy,
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Floating point (FP) Arithmetic Il

v Since 1985, IEEE-754 standard for FP arithmetic requests correct rounding for :

+’_’><»+7\/-

v Correct Rounding: An operation whose entries are FP

numbers must return what we would get by infinitely precise operation followed by rounding.

RN(f(=))

floating-point number /

f(x) lives in this interval, Iy,

@ What about standard functions (sin, cos, log, etc.)?

~\|

midpoint number
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Floating point (FP) Arithmetic Il

v Since 1985, IEEE-754 standard for FP arithmetic requests correct rounding for :
+7 — X, +7 \/
v Correct Rounding: An operation whose entries are FP
numbers must return what we would get by infinitely precise operation followed by rounding.

RN(f(=))

: VRN

| | | | L I | I |
| /I I I ik | "\l 1
floating-point number f midpoint number
f(x) lives in this interval, Iy,

@ What about standard functions (sin, cos, log, etc.)?

e Most Mathematical Libraries (libms) do not provide correctly rounded functions, although
|IEEE-754-2008 recommends it.

10 / 52


https://gforge.inria.fr/scm/browser.php?group_id=5929&extra=crlibm

Floating point (FP) Arithmetic Il

v Since 1985, IEEE-754 standard for FP arithmetic requests correct rounding for :
+7 — X, +7 \/
v Correct Rounding: An operation whose entries are FP
numbers must return what we would get by infinitely precise operation followed by rounding.

RN(f(=))

: VRN

| | | | L I | I |
| /I I I ik | "\l 1
floating-point number f midpoint number
f(x) lives in this interval, Iy,

@ What about standard functions (sin, cos, log, etc.)?
e Most Mathematical Libraries (libms) do not provide correctly rounded functions, although
|IEEE-754-2008 recommends it.

o Correctly Rounded Libm (CRLibm*) was developed by the Arénaire/AriC team, Lyon,
France.

*https://gforge.inria.fr/scm/browser.php?group_id=5929&extra=crlibm
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Correctly rounded functions

-

| filab >R
f(x), = € a,b]

S S S S —

—

| Implement

—

I_f(vau" z){

|
I //function code

| return r; I

L)

L

machine representable numbers




Correctly rounded functions

-

£ (var )
f:la,0] = R (? //function code

f<x>, N

=~
SRR

machine representable numbers

return r;




Sellya

Tool & library for safe floating-point code development

o Targeted for automatized implementation of libms

http://sollya.gforge.inria.fr/

o Developed by C. Lauter and S. Chevillard, M.J., N. Jourdan

Used for demos in this course.
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Implementation of Standard Functions

exp, In, cos, sin, arctan, v/, . ..

Goal: evaluation of ¢ to a given accuracy 7.
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Implementation of Standard Functions

exp, In, cos, sin, arctan, v/, . ..

Goal: evaluation of ¢ to a given accuracy 7.

o Step 1. Argument reduction (Payne & Hanek, Ng, Tang, etc.):
z€R, p(2) ~ f(y), y € [a,b].

e’ =2mz =2/mz . omz Tzl = 28 . ¢#= Pl = 2F . ¢ jp| <In2.

=oM+E ¢ty €Y, |y <274
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Implementation of Standard Functions

@ Step 2. Computation of p*, a “machine-efficient” polynomial approximation of f (AriC,
implementation in Sollya)*.

Find c2,c3 € Z such that

max ex m—<1+x+c—2m2+c—3x3)’
- 12lyep-12 [P DEE DES

is minimal.

*S. Chevillard, N. Brisebarre, A. Tisserand, S. Torres
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Implementation of Standard Functions

@ Step 2. Computation of p*, a “machine-efficient” polynomial approximation of f (AriC,
implementation in Sollya)*.

Find c2,c3 € Z such that

max ex m—<1+x+c—2m2+c—3x3)’
- 12lyep-12 [P DEE DES

is minimal.

[fpminimax Sollya routine, BrisebarreChevillard2007] ~~
4503599645901977 ,  4503599645901977
p*(z)=14+ =+ 553 z® + 552 a

*S. Chevillard, N. Brisebarre, A. Tisserand, S. Torres
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Implementation of Standard Functions

o Step 3. Computation of a rigorous approximation error bound ||f — p*(z)

I

4503599645901977 ,  4503599645901977
e(z) :=expz— 14+ =+ 553 ¢+ 552 4
= Prove that:
u lllzmi2g-iy == o Je(a)]
<2.58-10717

00002 000015 00001 505 0 5005 00001 000015 00002

*Sollya (S. Chevillard, M. Joldes, C. Lauter)
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Implementation of Standard Functions

exp, In, cos, sin, arctan, v/, ...

Goal: evaluation of ¢ to a given accuracy 7.

@ Step 1. Argument reduction (Payne & Hanek, Ng, Tang, etc.):
z€R, p(z) ~ f(y), y € [a,b].

o Step 2. Computation of p*, a “machine-efficient” polynomial approximation of f (AriC,
implementation in Sollya).*.

o Step 3. Computation of a rigorous approximation error || f — p*||.T.

*S. Chevillard, N. Brisebarre, A. Tisserand, S. Torres
TSoIIya (S. Chevillard, M. Joldes, C. Lauter)

16 / 52



Implementation of Standard Functions

exp, In, cos, sin, arctan, v/, ...

Goal: evaluation of ¢ to a given accuracy 7.

@ Step 1. Argument reduction (Payne & Hanek, Ng, Tang, etc.):

z€R, p(z) ~ f(y), y € [a,b].

Step 2. Computation of p*, a “machine-efficient” polynomial approximation of f (AriC,
implementation in Sollya).*.

Step 3. Computation of a rigorous approximation error || — p*||.T.
Step 4. Computation of a certified evaluation error of p*: GAPPA (G. Melquiond).

*S. Chevillard, N. Brisebarre, A. Tisserand, S. Torres
TSoIIya (S. Chevillard, M. Joldes, C. Lauter)

16 / 52



Implementation of Standard Functions

exp, In, cos, sin, arctan, v/, ...

Goal: evaluation of ¢ to a given accuracy 7.

Step 0. Computation of hardest-to-round cases (binary32 done, binary64 ongoing
projects, AriC).

Step 1. Argument reduction (Payne & Hanek, Ng, Tang, etc.):

z€R, p(z) ~ f(y), y € [a,b].

Step 2. Computation of p*, a “machine-efficient” polynomial approximation of f (AriC,
implementation in Sollya).*.

Step 3. Computation of a rigorous approximation error || — p*||.T.
Step 4. Computation of a certified evaluation error of p*: GAPPA (G. Melquiond).

*S. Chevillard, N. Brisebarre, A. Tisserand, S. Torres
TSoIIya (S. Chevillard, M. Joldes, C. Lauter)
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Polynomial Approximation

Framework of function evaluation, two norms over C([a, b]):

e L2 norm: given a nonnegative weight function w € C([a,b]), dz denotes the Lebesgue

measure:
g € 12({a, ], w, dx)
if
b
[ w@lo@)Pde < o,
then define

b
lollzw =)/ [ w@)lgta) 2z
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Polynomial Approximation

Framework of function evaluation, two norms over C([a, b]):

e L2 norm: given a nonnegative weight function w € C([a,b]), dz denotes the Lebesgue

measure:
g € 12({a, ], w, dx)
if
b
[ w@lo@)Pde < o,
then define

b
lollzw =)/ [ w@)lgta) 2z

o L norm (aka Chebyshev, supremum norm): if g is bounded on [a, b]:

lglloc = sup |g(z)],

z€la,

(for continuous g, [|gllcc = maxgc(q,p] [9(x)])-
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Polynomial Approximation

Denote Ry, [X] = {p € R[X];degp < n}.

Given f € C([a,b]), n € N, find p € R [X] s.t.

—f|l= inf — 1.
[lp — £ll qeﬁr;[X]llq il
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—f|l= inf — 1.
[lp — £ll qeﬁr;[X]llq il

e C([a,b]) C L2(]a,b],w,dz), which is a complete Hilbert space with || - ||2 and

b
(.9 = [ F@gt@w()ds,

Hence, p := prt(f) onto R [z].
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Polynomial Approximation

Denote Ry, [X] = {p € R[X];degp < n}.

Given f € C([a,b]), n € N, find p € R [X] s.t.

— fll = inf — fl-
o= fll = _inf _ lla= I
e C([a,b]) C L2(]a,b],w,dz), which is a complete Hilbert space with || - ||2 and

b
(.9 = [ F@gt@w()ds,

Hence, p := prt(f) onto R [z].
@ WeierstraR Thm. (1885) Polynomials are dense in (C([a, b]), | - ||oc)
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Polynomial Approximation

Denote Ry, [X] = {p € R[X];degp < n}.
Given f € C([a,b]), n € N, find p € R [X] s.t.

—f|l= inf — 1.
[lp — £ll qeﬁ[X]llq il

e C([a,b]) C L2(]a,b],w,dz), which is a complete Hilbert space with || - ||2 and

b
(.9 = [ F@gt@w()ds,
Hence, p := prt(f) onto R [z].
@ WeierstraR Thm. (1885) Polynomials are dense in (C([a, b]), | - ||oc)

inf  ||g— flloc = 0 as n — oco.
qERy [z]

The infimum is reached:
Let (E,|| - ||) be a normed R-vector space, let F' be a finite dimensional subspace of (E, || - ||).
For all f € E, there exists p € F such that ||p — f|| = minger [|g — f||. Moreover, the set of

best approximations to a given f € E is convex.
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Best L>° (Minimax) Approximation. Uniqueness

The best L? approximation is unique, which is not always the case in the L™ setting.

Consider the interval [—1,1], f be the constant function 1 and F = Rg where g :  — z2.
Determine the set of best L°° approximations to f.

Note that
min max |1 —ca?|>1,
ceR ze[—1,1]

attained for all ¢ € [0, 2].

In the case of L°°, it is necessary to introduce an additional condition known as the Haar
condition.
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Best L>° (Minimax) Approximation. Uniqueness

Consider n + 1 functions o, . . ., ¢©r defined over [a,b]. We say that o, ..., pn satisfy the
Haar condition iff

© (; are continuous;

@ and the following equivalent statements hold:

o (i) are R-linearly independent and any p = > 7', arpr # 0 has at most n distinct zeros
in [a,b].

o forall zg,z1,...,2, € [a,b],
wo(zo) -+ @n(zo)
. . =0 & Fi#jx;=zxj;
vo(@n) -+ @nlTn)
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Best L>° (Minimax) Approximation. Uniqueness

A set of functions that satisfy the Haar condition is called a Chebyshev system. The prototype
example is ¢;(x) = z*, for which we have
WO(IO) Wn(zo) I 378
: : = : =Vh = H (:Ej - .’El)

0o(zn) - onlTn) 1 oz AN

33
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Best L>° (Minimax) Approximation. Uniqueness

Alternation Theorem. Kirchberger (1902)

Let {¢0,-..,%n} be a Chebyshev system over [a,b]. Let f € C([a,b]).
A generalized polynomial p = Y77’ a1 is the best approximation to f iff

there exist n + 2 points a < zg < 1 < - -+ < Tp+1 < b such that, for all k,

(@) = plax) = (=1)*(f(z0) = p(20)) = =I|f — Plico-

Example error plot:

[} 02 0.4 06 o8 1

best approximation p < error f — p has at least n + 2 extrema, all global and with alternating
signs.
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Best L>° (Minimax) Approximation. Uniqueness

Alternation Theorem. Kirchberger (1902)

Let {¢0,-..,%n} be a Chebyshev system over [a,b]. Let f € C([a,b]).
A generalized polynomial p = Y77’ a1 is the best approximation to f iff

there exist n + 2 points a < zg < 1 < - -+ < Tp+1 < b such that, for all k,

(@) = plax) = (=1)*(f(z0) = p(20)) = =I|f — Plico-

Example error plot:

[} 02 0.4 06 o8 1

best approximation p < error f — p has at least n + 2 extrema, all global and with alternating
signs.

~ An iterative algorithm due to Remez(1934) approximates p. -



Remez algorithm

Algorithm

Input: An interval [a,b], a function f € C([a,b]), a natural integer n, a Chebyshev system
{¢kYo<k<n, a tolerance A.

Output: An approx of degree n-minimax polynomial of f on the system {¢k}o<k<n-
@ Choose n + 2 points g < 1 < -+ < Tp+1 in [a,b], § < 1, + 0.
o WHILE 6 > Ale|

o Determine the solutions ag, . .., a, and € of the linear system

> arerlas) — f(z5) = (=1)7e, 5 =0,...,n + 1.
k=0

o Choose Znew € [a,b] such that

n
lp = fllo = [P(Tnew) — f(Znew)|, with p = Z aAkPk-
k=0

o Replace one of the x; with Zpew, in such a way that the sign of p — f alternates at the
points of the resulting discretization zo new, - -

0 § + [P(@new) — f(@new)| — |el-
@ Return p.

+yTn+1,new-

Keep calm and (don't) read, a step-by-step demo follows!
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Truncated Polynomials

Standard Functions Implementation ~~ Coefficients encoded on finite (constrained) format.
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,qEP.

24 / 52



Truncated Polynomials

Standard Functions Implementation ~~ Coefficients encoded on finite (constrained) format.

Let m = (m;)o<i<y, a finite sequence of rational integers. Let

Pl ={q=q +qz+ -+ qgnz" € Ry[X];q; integer multiple of 27" Vi}.

Question: find p* € P;* which minimizes ||f — ¢|

,qEP.

First idea. Remez — p(z) = po + p1x + -+ + ppaz™. Every p; rounded to a;/2™¢, the
ao a an
T4+

_ o)
2mo omy QM

nearest integer multiple of 27" — p(x)
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Truncated Polynomials

Standard Functions Implementation ~~ Coefficients encoded on finite (constrained) format.

Let m = (m;)o<i<y, a finite sequence of rational integers. Let

Pl ={q=q +qz+ -+ qgnz" € Ry[X];q; integer multiple of 27" Vi}.

Question: find p* € P;* which minimizes ||f — ¢|

,qEP.

First idea. Remez — p(z) = po + p1x + -+ + ppaz™. Every p; rounded to a;/2™¢, the
ao a an
T4+

_ o)
2mo omy QM

nearest integer multiple of 27" — p(x)

Problem: p not necessarily a minimax approx. of f among the polynomials of .
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Approximation of the Function over by a Degree- Polynomial

Maple or Sollya tell us that the polynomial
p = 0.9998864206 + 0.00469021603z — 0.530308866522 + 0.063046360992>

is ~ the best approximant to cos. We have ¢ = || cos —p||[g,x/4) = 0.0001135879....
We look for ag, a1, az,as € Z such that

ap ai
max cosT — (ﬁ + Qﬁ

as as
re 2 0]
0<z<m/4 26

24

is minimal.
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Approximation of the Function over by a Degree- Polynomial

Maple or Sollya tell us that the polynomial
p = 0.9998864206 + 0.00469021603z — 0.530308866522 + 0.063046360992>

is ~ the best approximant to cos. We have ¢ = || cos —p||[g,x/4) = 0.0001135879....
We look for ag, a1, az,as € Z such that

ag al
7+7

max ‘COSﬁ— (212 210

as as
re 2 0]
0<z<m/4 26

24
is minimal.
The naive approach gives the polynomial

L2 5 34, 1oy
p7ﬁ+270172—6L +27.L.

We have € = || cos —p|| [0, /4] = 0.00069397....

25 / 52



Approximation of the Function over by a Degree- Polynomial

Maple or Sollya computes a polynomial p which is ~ the best approximant to cos. We have
e = || cos —pl o, /4) = 0.0001135879....
We look for ag, a1, as,as € Z such that

a2 5 a3 s

Jeoss = (g5 + o= + 3927 + 512°))|
max COST — — — T — X — T
0<z<m/4 212 210 26 24

is minimal.
The naive approach gives the polynomial p and é = || cos —p|[[, /4] = 0.00069397...
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Approximation of the Function over by a Degree- Polynomial

Maple or Sollya computes a polynomial p which is ~ the best approximant to cos. We have
e = || cos —pl o, /4) = 0.0001135879....

We look for ag, a1, as,as € Z such that

az o as 3)‘

‘ (ao + 2t +
max COsST — —_— —X — X —X
0<z<m/4 212 210 26 24

is minimal.
The naive approach gives the polynomial f and é = || cos —p|[[g /4] = 0.00069397... But the

best “truncated” approximant:

4095 6 34 5, 1 4
iz T T T

*

which gives || cos —p*||(g,x /4] = 0.0002441406250.

In this example, we gain —log,(0.35) ~ 1.5 bits of accuracy.
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Approaches for best "truncated" approximants

o Linear programming: tackle degree-8 or 10 polynomials: good for hardware-oriented
applications, not satisfying for software-oriented.

Lattice Basis Reduction: much faster and more efficient, gives a very good approximant
(e.g. provides practical gains of 16 bits in double precision implementation of arcsin
function).

@ Works of N. Brisebarre, S. Chevillard, A. Tisserand, S. Torres.

o Nice implementation in Sollya
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Implementation of Standard Functions

Step 0. Computation of hardest-to-round cases.
Step 1. Argument reduction ~ f(y), y € [a, b].
Step 2. Computation of p, a “machine-efficient” polynomial approximation of f.

Step 3. Computation of a rigorous approximation error bound || f — p||eo

28 / 52



Implementation of Standard Functions

o Step 3. Computation of a rigorous approximation error bound ||f — p||so

Example

f(@) = e/ 5@, 2 e 0,1], p(e) =%z’ (@) = f(z) —p(z) st
llelloo = SuPze[q, vy {le(2)[} is as small as possible (Remez algorithm)

4e-05

3e-05

2e-05

=\

1e-05

-1e-05

-2e-05

-3e-05
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Rigorous Computing Tools

1. Interval arithmetic (1A)

o Each interval = pair of floating-point numbers
(multiple precision A libraries exist, e.g. MPFI*)

*http://gforge.inria.fr/projects/mpfi/
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Rigorous Computing Tools

1. Interval arithmetic (1A)

e Each interval = pair of floating-point numbers
(multiple precision IA libraries exist, e.g. MPFI™)
o T € [3.1415,3.1416]
o Interval Arithmetic Operations
Eg. [1,2] + [-3,2] = [-2,4]
e Range bounding for functions
Eg. v€[-1,2,f(x)=a®—a+1
F(X)=X?2-X+1
F(-1,2]) = [ 1 2] [—1,2
F(-1,2]) = [ 6]

*http://gforge.inria.fr/projects/mpfi/
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Rigorous Computing Tools

1. Interval arithmetic (1A)

e Each interval = pair of floating-point numbers
(multiple precision IA libraries exist, e.g. MPFI™)
o T € [3.1415,3.1416]
o Interval Arithmetic Operations
Eg. [1,2] + [-3,2] = [-2,4]
e Range bounding for functions
Eg. z€[-1,2],f(z)=2®—z+1
F(X)=X?-X+1

F([—LQ]) = [_172]2 - [_1a2] + [L 1]
F([—LQ]) = [_1?6] . .
x € [-1,2], f(x) € [-1,6], but Im(f) = [3/4, 3] ~» Overestimation

*http://gforge.inria.fr/projects/mpfi/
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Rigorous Computing Tools

1. Interval arithmetic (IA)
o Each interval = pair of floating-point numbers
(multiple precision IA libraries exist, e.g. MPFI™)
o T € [3.1415,3.1416]
o Interval Arithmetic Operations
Eg. [1,2] + [-3,2] = [—2,4]
o Range bounding for functions ~ Overestimation
Eg. z € [-1,1], f(x) = '/ °5(®) — 28114 — 3.411a*

3]
o
1
f— T . —
-1 -05 0] 05 1
X
-1
_2,
SR
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1. Interval arithmetic (IA)
o Each interval = pair of floating-point numbers
(multiple precision IA libraries exist, e.g. MPFI™)
o m € [3.1415,3.1416]
e Interval Arithmetic Operations
Eg. [1,2] + [-3,2] = [-2,4]
o Range bounding for functions ~ Overestimation
Eg. z € [-1,1], f(x) = '/ °5(®) — 28114 — 3.411a*

24

30 / 52


http://gforge.inria.fr/projects/mpfi/

Rigorous Computing Tools

1. Interval arithmetic (IA)

Each interval = pair of floating-point numbers

(multiple precision IA libraries exist, e.g. MPFI™)

m € [3.1415, 3.1416]
Interval Arithmetic Operations
Eg. [1,2] + [-3,2] = [-2,4]

Range bounding for functions ~» Overestimation
Eg. z € [-1,1], f(x) = '/ °5(®) — 28114 — 3.411a*

061

0.4+

-0.4+
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Rigorous Computing Tools

1. Interval arithmetic (IA)

Each interval = pair of floating-point numbers

(multiple precision IA libraries exist, e.g. MPFI™)

7 € [3.1415,3.1416]

Interval Arithmetic Operations

Eg. [1,2] + [-3,2] = [-2,4]

Range bounding for functions ~» Overestimation

Eg. z € [-1,1], f(x) = '/ °5(®) — 28114 — 3.411a*

0.4+

0.3+

-0.24
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Rigorous Computing Tools

1. Interval arithmetic (IA)

Each interval = pair of floating-point numbers

(multiple precision IA libraries exist, e.g. MPFI™)

7 € [3.1415,3.1416]

Interval Arithmetic Operations
Eg. [1,2] + [-3,2] = [-2,4]

Range bounding for functions ~» Overestimation

Eg. z € [-1,1], f(x) = '/ °5(®) — 28114 — 3.411a*

0.15

0.10

0.05 4
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When Interval Arithmetic does not suffice:

Computing supremum norms of approximation errors

flz) = e/ we0,1], p(x) = 212, cizt, e(x) = f(z) — p(z) s.t.
llell oo = SUPLc[q, by {le(2)]} is as small as possible (Remez algorithm)
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When Interval Arithmetic does not suffice:

Computing supremum norms of approximation errors

flz) = e/ we0,1], p(x) = 212, cizt, e(x) = f(z) — p(z) s.t.
llell oo = SUPLc[q, by {le(2)]} is as small as possible (Remez algorithm)

[ 0.2 04 0.6 0.8 1
Using IA, e(z) € [~233,298], but [|e(z)]|,, ~ 3.8325 105
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4e-05

3e-05

2e-05

1e-05

-1le-05

-2e-05

-3e-05

-4e-05

Why IA does not suffice: Overestimation

Overestimation can be reduced by using intervals of smaller width.

83244205

-3.83245¢-05

-3.83246e-05

-3.83247e-05

-3.83248e-05

-3.83240e-05

-3.8325e-05

-3.83251e-05

-3.83252e-05

-3.83253e-05

-3.83254e-05
0

0 0.2 0.4 0.6 0.8 1

In this case, over [0, 1] we need 107 intervals!
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Rigorous polynomial approximations (RPAs)

1f = pll <

0.003

0.002 B

0.001 B

-0.001 |- =

-0.002 - =

-0.008 |- =

-0.004 L | |
-1 0.5 0 05 1 33 / B2



Rigorous polynomial approximations (RPAs)

f=pll< [If =TI + [[T—pl
N—— N——

easier to compute  reduced dependency

f replaced with
- polynomial approximation 7"
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Rigorous polynomial approximations (RPAs)

f=pll< [If =TI + [[T—pl
N—— N——

easier to compute  reduced dependency

f replaced with

- polynomial approximation 7"

-interval A's. t. f(z) — T(z) € A,Vz € [a, b
0.003 ‘

0.002 B

0.001 B

-0.001

-0.002 - =

-0.008 |- =

-0.004 L | |
-1 0.5 0 05 1 33 / B2



Rigorous polynomial approximations (RPAs)

1f = pll <

|f =TI
N——

easier to compute

+ [Tl
N——

reduced dependency

f replaced with a rigorous polynomial approximation : (T, A)

- polynomial approximation 7"
-interval A's. t. f(z) — T'(z)

0.003

0.002

0.001

-0.001

-0.002

-0.003

€ A,Vz € [a,b]
T

-0.004

0.5

05
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Rigorous polynomial approximations (RPAs)

— Consider "sufficiently smooth" univariate functions f over [a, b].
— f replaced with a rigorous polynomial approximation : (T, A)
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Rigorous polynomial approximations (RPAs)

— Consider "sufficiently smooth" univariate functions f over [a, b].
— f replaced with a rigorous polynomial approximation : (T, A)

(1). RPAs based on Taylor series
~~ Taylor Models (TMs).

(2). ~ Certify RPAs based on best polynomial approximations: use intermediary RPAs
obtained in (1), (3).

(3). Near-best RPAs: based on Chebyshev Series
~+ Chebyshev Models (CMs).

e f is an elementary function, e.g. exp(1/ cos(z));

o f is a D-finite function, i.e. solution of an ordinary differential equation with polynomial
coefficients, e.g. exp, Airy, Bessel.
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Rigorous polynomial approximations (RPAs)

— Consider "sufficiently smooth" univariate functions f over [a, b].
— f replaced with a rigorous polynomial approximation : (T, A)

(1). RPAs based on Taylor series
~~ Taylor Models (TMs).

(2). ~ Certify RPAs based on best polynomial approximations: use intermediary RPAs
obtained in (1), (3).

(3). Near-best RPAs: based on Chebyshev Series
~+ Chebyshev Models (CMs).

e f is an elementary function, e.g. exp(1/ cos(z));
e f is a D-finite function, i.e. solution of an ordinary differential equation with polynomial

coefficients, e.g. exp, Airy, Bessel.

(4). Other orthogonal polynomials...
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Taylor Models

- Consider Taylor approximations
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Taylor Models

- Consider Taylor approximations
Let n € N, n+ 1 times differentiable function f over [a, b] around xg.

o) — N fD (o) (@ — m0)° A (z
I( )—;—u + nA( )

T(z)
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Taylor Models

- Consider Taylor approximations
Let n € N, n+ 1 times differentiable function f over [a, b] around xg.

o) — S fD (o) (@ — m0)° A (z
f( )—;) i + nA( )

T(x)

- For obtaining A:

@ For “basic functions” (sin, cos, etc.) use Lagrange formula

SV ) (@ — o)™
Vx € [a,b], 3§ € [a,b] s.t. An(z,8) = 1)
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Taylor Models

- Consider Taylor approximations
Let n € N, n+ 1 times differentiable function f over [a, b] around xg.

o) — N fD (o) (@ — m0)° A (z
I( )—;—u + ri )

T(z)

- For obtaining A:
@ For “basic functions” (sin, cos, etc.) use Lagrange formula

o For “composite functions'use a two-step procedure:

- compute models (7', A) for all basic functions;
- apply algebraic rules with these models, instead of operations with the corresponding

functions.

35 / 52



Taylor Models ~ Algebra of RPAs

Example: feomp(x) = exp(sin(z) + cos(x))

exp
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Taylor Models ~ Algebra of RPAs

Example: feomp(x) = exp(sin(z) + cos(x))

exp

o+
(Th, A @ T2,A2
SO
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Taylor Models ~ Algebra of RPAs

Example: feomp(x) = exp(sin(z) + cos(x))

exp

[+ )(Tyqqr Dadd)
(Th, 2 @ @ (T5, Ag)
SO
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Taylor Models ~ Algebra of RPAs

Example: feomp(x) = exp(sin(z) + cos(x))
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Why use a two-step procedure for composite functions?

Otherwise A can be largely overestimated.
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Why use a two-step procedure for composite functions?

Otherwise A can be largely overestimated.

Example:

f(x) = el/ <% over [0,1], n =13, zo = 0.5. f(z) — T(x) € [0,4.56 - 10~3]

o Automatic differentiation and Lagrange formula:
A = [-1.93-102, 1.35- 10%]

o Cauchy's Estimate
A =[-9.17-1072,9.17-1072]
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Why use a two-step procedure for composite functions?

Otherwise A can be largely overestimated.

Example:

f(x) = el/ <% over [0,1], n =13, zo = 0.5. f(z) — T(x) € [0,4.56 - 10~3]

o Automatic differentiation and Lagrange formula:
A = [-1.93-102, 1.35- 10%]

o Cauchy's Estimate
A =[-9.17-1072,9.17 - 1072

@ Taylor Models
A =[-9.04-1073,9.06-1072]

37 / B2



Another L> (Minimax) example

f(x) = arctan(z) over [-0.9,0.9],  p(x) - minimax, degree 15,
e(z) = p(z) — f(z), |lello, ~ 1078

1.5e-08

1e-08

5e-09 Taylor approximations:

need a TM of degree 120 (in theory)

In practice, computed interval error
56-00 bound not sufficiently small due to
overestimation.

-1e-08

-1.5e-08

-08 -06 -04 -02 0 0.2 0.4 0.6 0.8
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Improvement?

- Use a polynomial approximation better than Taylor:
o Why?
— better convergence domains
— better compact approximations on larger domains
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Quick Reminder: Chebyshev Polynomials

T (cos(0)) = cos(nb)

1 T T T
08 - T5
0.6 -
04 |-
02

Mz T1 ) T3 T[]
-0.2 —
-04 —
-06 B
-0.8 —

A 1 1 L

-1 05 0 05 1
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Quick Reminder: Chebyshev Polynomials

T (cos(0)) = cos(nb)

1 T T T
08 - T5
0.6 -
04 -
02

° Mo 71 ) T3\ T4
-0.2 E
-04 .
-06 .
-0.8 .

1 L L L

-1 05 0 05 1

Chebyshev nodes: n distinct real roots in [—1, 1] of T,

zk:cos(W),kZO,...,n—l.
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Quick Reminder: Chebyshev Polynomials

T (cos(0)) = cos(nb)

1
T T :IF Tit1 =2$Ti—Ti,1,T0($) = 1,T1(a:) =

08 |- 5 :
06 |-

04 |-

02

O T3 T3\ T4
02 B
04 B
06 -
08 B
1 I L L

1 05 0 05 1

Chebyshev nodes: n distinct real roots in [—1, 1] of T,

zk:cos(W),kZO,...,n—l.
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Quick Reminder: Chebyshev Polynomials

T (cos(0)) = cos(nb)

1 T T T
08 - T5
0.6 -

04 -
02

° Mo 71 ) T3\ T4
-0.2
-04
-06
-0.8

1 1 1 1

-1 05 0 05

Orthogonality:

' @),

1 V1—22

Chebyshev nodes: n distinct real roots in [—1, 1] of T,

zk:cos(W),kZO,...,n—l.

IR I

Tiv1 =22T; —Ti—1,To(z) =1, Th(z) ==

ifi#£j
if =0
otherwise




Quick Reminder: Chebyshev Polynomials

T (cos(0)) = cos(nb)

1 T T T
08 - T5
0.6 -
04 -
02

° Mo 71 ) T3\ T4
-0.2 E
-04 .
-06 .
-0.8 .

1 1 1 1

-1 05 0 05

Tiv1 =22T; —Ti—1,To(z) =1, Th(z) ==

Orthogonality:

VL))
/_1 \/l—Jz2 dr =

n—1
> Tia) Ty (k) =
k=0

Chebyshev nodes: n distinct real roots in [—1, 1] of T,

zk:cos(W),kZO,...,n—l.

p3S © va3d O

ifi#7
if i=0
otherwise
if i £ 5
if i =0
otherwise




Chebyshev Series vs Taylor Series

Error of approximation for exp(z)
0

5 7

Two approximations of f:

@ by Taylor series

T (n)
f= Z cnx”, cn = ! (0)7
n=0

n!

o or by Chebyshev series

—+o0

f: Z t”Tn(x)v

n=—oo

/ To(t f(t) dt

Taylor expansion
of order 3

Chebyshev expansion
of order 3
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Chebyshev Series vs Taylor Series I

Bad approximation outside its circle of convergence

1.5 1
1 +
0.5 +
} t t A T
-1 —0.5 0.5 1

Z0.5 +

1 arctan(2x)

Taylqr approximation
—-1.5+
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Chebyshev Series vs Taylor Series I

Approximation of arctan(2z) by Chebyshev expansion of degree 11

1.5 1
1 4+
0.5 +
b t t 3§ T
—0.5 0.5 1

0.5 +

1 arctan(2x)

Taylqr approximation
154+

Chebyshe} approximation
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Chebyshev Series vs Taylor Series Il

Convergence Domains :

For Taylor

disc centered at x¢p = 0 which avoids all

series:

the singularities of f

singularities of f

\\\

2 IR

X

SN

For Chebyshev series:
elliptic disc with foci at +1 which
avoids all the singularities of f

singularities of f
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Chebyshev Series vs Taylor Series Il

Convergence Domains :

For Chebyshev series:
elliptic disc with foci at £1 which
avoids all the singularities of f

For Taylor series:
disc centered at x¢p = 0 which avoids all

the singularities of f

singularities of f singularities of f

\\x \\x
\/\ \/~
S|

R —

X c X c

o Taylor series can not converge over entire [—1, 1] unless all singularities lie outside the
unit circle.
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Chebyshev Series vs Taylor Series Il

Convergence Domains :

For Taylor series:

disc centered at x¢p = 0 which avoids all

the singularities of f
singularities of f

S

2 IR

X

SN

X

[+

For Chebyshev series:
elliptic disc with foci at £1 which
avoids all the singularities of f

singularities of f

\\\x

X [

o Taylor series can not converge over entire [—1, 1] unless all singularities lie outside the

unit circle.

v Chebyshev series converge over entire [—1, 1] as soon as there are no real singularities in

[~1,1].
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Chebyshev Series vs Taylor Series 1V

Truncation Error :

Taylor series, Lagrange formula:

Vo e [-1,1], I € [-1,1] s.t.

(n+1)
1) - 1@ = Lo D = aoy.
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Chebyshev Series vs Taylor Series 1V

Truncation Error :

Taylor series, Lagrange formula:
Vz € [-1,1], 3¢ € [-1,1] s.t.

(n+1)
(@) - T(z) = f(nfl(ﬁ)(x — zo)n 1.

Chebyshev series, Bernstein-like formula:
vz € [-1,1], 3¢ € [-1,1] s.t.

(n+1)
e) = Ple) = L&,
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Chebyshev Series vs Taylor Series 1V

Truncation Error :

Taylor series, Lagrange formula:
Vz € [-1,1], 3¢ € [-1,1] s.t.

_ S nt1
f@) —T(x) = m(z—xo) :
Chebyshev series, Bernstein-like formula:
vz € [-1,1], 3¢ € [-1,1] s.t.

(n+1)
e) = Ple) = L&,

[] We should have an improvement of 2™ in the width of the Chebyshev truncation error.
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Quality of approximation of truncated Chebyshev series compared to best

polynomial approximation

It is well-known that truncated Chebyshev series 7 4(f) are near-best uniform approximations
[Chap 5.5, Mason & Handscomb 2003].
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Let p7 is the polynomial of degree at most d that minimizes
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17 = malPlloe < (5 logd+00) I = il o)

N——
Ag

45 / 52



Quality of approximation of truncated Chebyshev series compared to best

polynomial approximation

It is well-known that truncated Chebyshev series 7 4(f) are near-best uniform approximations
[Chap 5.5, Mason & Handscomb 2003].

Let p7 is the polynomial of degree at most d that minimizes
lf = Plloc =sup_1<p<1 f(2) — p(2)].

17 = malPlloe < (5 logd+00) I = il o)

N——
Ag

A1g9 = 2.22... — we lose at most 2 bits
A3p = 2.65... — we lose at most 2 bits
A1p90 = 3.13... — we lose at most 3 bits

As00 = 3.78... — we lose at most 3 bits
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Chebyshev truncations are near-best : Example

e® — (1,2660T(z) + 1,1303T (x)
+0,2714T5 (z) + 0, 044375 ()
+ 0, 00547} (z))

‘ : x

—f “\/2 1/2 |

e® — (1.0000 + 0.9973z
+0.4988z2 4 0.1773x3
T—5.1073 +0.0441z4)

Chebyshev truncation of degree 4

Best approximant of degree 4
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Chebyshev Series vs Taylor Series (9gag version)




Computing the coefficients

+oo
Chebyshev series of f = Z t;T;(x) :
i=—00
Orthogonalit t ! /1 Ti(t) /) dt ~ TCS
— Or nality ~» t; = — () —=—=dt ~
. Y ™J_1 V1—1t2
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Computing the coefficients

+oo
Chebyshev series of f = Z t;T;(x) :

i=—00

Orthogonalit t ! /1 Ti(t) /) dt ~ TCS
- r nali ~r ol = — i ~
. Y m™J_1 V1—t2

- n
— Discrete orthogonality ~ t; = > %_Hf(zk)ﬂ(zk) ~+ Chebyshev Interpolant (Cl)

48 / 52



Computing the coefficients

—+oo
Chebyshev series of f = Z t;Ti(x) :

i=—00

Orthogonalit: t ! /1 T(t)if(t) dt ~ TCS
- = .
g y =7 . i T2
. n
— Discrete orthogonality ~~ t; = > %Hf(a:k)T,(:rk) ~» Chebyshev Interpolant (Cl)
k=0

Remark: TCS or CI?

o Cl: when f is elementary, evaluating f at Chebyshev nodes is easy

e TCS: when f is given by LODE
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Another L> (Minimax) example

f(x) = arctan(z) over [-0.9,0.9],  p(x) - minimax, degree 15,
e(z) = p(z) — f(z), |lello, ~ 1078

1.5e-08

1e-08

Taylor approximations:
need a TM of degree 120 (in theory)

5e-09

In practice, computed interval error
bound not sufficiently small due to
-5e-00 overestimation.

A CM of degree 60 works.

-1e-08

-1.5e-08

-08 -06 -04 -02 0 0.2 0.4 0.6 0.8
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CMs vs. TMs

Comparison between remainder bounds for several functions:

(@), I, n ™M Timing (ms) ™ Timing (ms)
sin(x), [3, 4], 10 1.19 - 10 14 4 1.22 1011 2
arctan(z), [—0.25, 0.25], 15 | 7.89 - 10 10 10 2.58 . 10 10 4
arctan(z), [—0.9, 0.9], 15 5.10 - 10~ 5 14 1.67 - 102 7
exp(1/ cos(z)), [0, 1], 14 5.22 - 10~/ 31 9.06 - 103 14
%, [0, 1], 15 4.86- 1079 38 1.18 - 1073 19
sin(exp(x)),[—1, 1], 10 2.56 - 10~ 7 2.96 - 10 2 4
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Ready to implement your favorite function in C?

What I remember
most about

LEGOs

Bulding things according
to the instructions

Building whatever the
hell T wanted

Searching for that one

goddarmn piece iIn my
gant box of LEGOs

B O8O

Screaming in agony
affer stepping on a LEGO
brick while barefoot

LIBMs

IEEE 754-2008 standard

Automatic approach for many
functions

Best FPMinimaxApprox

Certifying
Approx & Rounding Errors
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Many thanks for N. Brisebarre and B. Salvy for useful sources and resources related to their
course on approximation http://www.ens-1lyon.fr/LIP/AriC/M2R/ASNA/
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