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Arnold example The origin of Arnold diffusion

In 1964, V.I. Arnold proposed an example of a nearly-integrable
Hamiltonian with 2 + 1/2 degreees of freedom

H(q, p, ϕ, I , t) =
1

2

(
p2 + I 2

)
+ ε(cos q − 1) (1 + µ(sinϕ+ cos t)) ,

and asserted [Arnold64] that given any δ,K > 0, for any 0 < µ� ε� 0,
there exists a trajectory of this Hamiltonian system such that

I (0) < δ and I (T ) > K for some time T > 0.

Notice that this a global instability result for the variable I , since

İ = −∂H
∂ϕ

= −εµ(cos q − 1) cosϕ

is zero for ε = 0, so I remains constant, whereas I can have a drift of
finite size for any ε > 0 small enough.
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Arnold example KAM theorem

Arnold’s Hamiltonian can be written as a nearly-integrable with 3 degrees
of freedom

H∗(q, p, ϕ, I , s,A) =
1

2

(
p2 + I 2

)
+ A + ε(cos q− 1) (1 + µ(sinϕ+ cos s)) ,

which for ε = 0 is an integrable Hamiltonian h(p, I ,A) = 1
2

(
p2 + I 2

)
+ A.

Since h satisfies the (Arnold) isoenergetic nondegeneracy∣∣∣∣ D2h Dh
Dh> 0

∣∣∣∣ = −1 6= 0

By the KAM theorem [Arnold63] proven by Arnold in 1963, any 5D
energy level H = const. is filled, up to a set of relative measure O(

√
ε) ,

with 3D-invariant tori Tω with Diophantine frequencies ω = (ω1, ω2, 1):

|k1ω1 + k2ω2 + k0| ≥ γ/|k |τ for any 0 6= (k1, k2, k0) ∈ Z,

where γ = O(
√
ε), and τ ≥ 2.
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Arnold example Orbits between KAM tori

Figure: a): 2D tori separate a 3D phase space. b) 3D tori do not separate a 5D
phase space

Since the 3D KAM invariant tori do not separate the 5D phase space,
there can exist irregular orbits ‘traveling’ between tori. Arnold conjectured
in the KAM theorem in 1963 that this was the general case.
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Integrable Hamiltonian sytems Action-angle variables

The unperturbed rôle is played by a (completely) integrable Hamiltonian
with n degrees of freedom. The Liouville–Arnold theorem establishes,
under certain hypotheses, the existence on some region of the phase space
of canonical action–angle variables (ϕ, I ) = (ϕ1, . . . , ϕn, I1, . . . , In) in
Tn × G ⊂ Tn × Rn, in which the Hamiltonian only depends on the action
variables: h(I ). The associated Hamiltonian equations for a trajectory
(ϕ(t), I (t)) are

ϕ̇ = ω(I ), İ = 0,

where ω = ∂Ih. Hence the dynamics is very simple: every n-dimensional
torus I = constant is invariant, with linear flow ϕ(t) = ϕ(0) + ω(I )t, and
thus all trajectories are stable. The motion on a torus is called
quasiperiodic, with associated frequencies given by the vector
ω(I ) = (ω1(I ), . . . , ωn(I )).
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Integrable Hamiltonian sytems resonant and non-resonant tori

Every n-dimensional invariant torus can be non-resonant or resonant,
according to whether its frequencies are rationally independent or not. A
non-resonant torus is densely filled by any of its trajectories. On the other
hand, a resonant torus is foliated into a family of lower dimensional tori.

Figure: Non-resonant 2D Torus
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Nearly-Integrable Hamiltonian KAM theorem

A nearly-integrable Hamiltonian can be written in the form

H(ϕ, I ) = h(I ) + εf (ϕ, I ), (1)

where ε is a small perturbation parameter. Then the Hamiltonian
equations are

ϕ̇ = ω(I ) + ε∂I f (ϕ, I ), İ = −ε∂ϕf (ϕ, I ).

For non-resonant, even more, Diophantine frequencies, KAM theorem
provides n-dimensional invariant tori. For resonant frequencies there
appear, typically, lower dimensional invariant tori, which are of saddle type,
and that were called whiskered tori by Arnold because they have
associated unstable and stable invariant manifolds.
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Nearly-Integrable Hamiltonian Nekhoroshev theorem

Nekhoroshev theorem, first stated in 1977, establishes Effective stability
for all the trajectories of a steep nearly-integrable system: For every initial
condition (ϕ(0), I (0)) one has an estimate of the type

|I (t)− I (0)| ≤ r0 ε
b for |t| ≤ T0 exp {(ε0/ε)a} .

The constants a, b > 0 are called stability exponents [Nekhoroshev77] .

If h is quasiconvex, that is, for any I ∈ G and v ∈ Rn,

Dh(I )v = 0 and v 6= 0 =⇒ v>D2h(I )v 6= 0,

the stability exponents are a = b = 1
2n .
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Arnold example again Nekhoroshev estimates

H∗(q, p, ϕ, I , s,A) =
1

2

(
p2 + I 2

)
+ A + ε(cos q− 1) (1 + µ(sinϕ+ cos s)) ,

Since h(p, I ,A) = 1
2

(
p2 + I 2

)
+ A satisfies

∣∣∣∣ D2h Dh
Dh> 0

∣∣∣∣ = −1 < 0, one

can check that h is quasiperiodic, and a priori

|(p, I ,A)(t)− (p, I ,A)(0)| ≤ r0 ε
1/6 for |t| ≤ T0 exp

{
(ε0/ε)1/6

}
.

A refinement [Pöschel93, D-Gutiérrez96] for orbits close to the single
resonance p = 0, using resonant normal forms, gives

|I (t)− I (0)| ≤ r0 ε
1/4 for |t| ≤ T0 exp

{
(ε0/ε)1/4

}
.
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Single resonance normal form Taylor expanding in I ∈ Rn+1

For a nearly-integrable Hamiltonian with n + 1 degrees of freedom

H(ϕ, I ) = h(I ) + εf (ϕ, I ), (ϕ, I ) ∈ Tn+1 × Rn+1

Select I ∗ = 0, and assume that the associated frequency vector
λ∗ = ∂Ih(0) ∈ Rn+1 has a single resonance: 〈k∗, λ∗〉 = 0 for some
0 6= k∗ ∈ Zn+1 and 〈k, λ∗〉 6= 0 for any k ∈ Zn+1 not co-linear to k∗.
By a classical algebraic result, we can assume λ∗ of the form

λ∗ = (0, ω∗) ,

where ω∗ ∈ Rn is non-resonant. (If necessary, one can assume a
Diophantine condition on ω∗ to apply later a KAM theorem.)
The unperturbed Hamiltonian can be written (up to a constant) as:

h(I ) = 〈λ∗, I 〉+
1

2
〈QI , I 〉+ O3(I ).
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Single resonance normal form Split ϕ→ (q, ϕ), I → (p, I )

Replace ϕ→ (q, ϕ) and I → (p, I ), and thus split (ϕ, I ) ∈ Tn+1 ×Rn+1 as
(q, p, ϕ, I ) ∈ T× R× Tn × Rn, and the matrix Q = ∂ 2

I h(0) as

∂ 2
p,Ih(0) =

(
β2 λ>

λ Q

)
,

where we have put β2 > 0 in order to fix ideas, λ ∈ Rn is a shift vector,
and the new matrix Q is n × n. We will assume β = 1; this can be
achieved replacing p, I by p/β, I/β (changing in this way the time scale
by a factor β), and rewriting ω∗/β, λ/β2, Q/β2 as ω∗, λ, Q respectively,
and redefining also the function f .
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Single resonance normal form Designing one step

Then, we can write our Hamiltonian in the form

H(q, p, ϕ, I ) = h(p, I ) + εf (q, p, ϕ, I ),

h(p, I ) = 〈ω∗, I 〉+
p2

2
+ 〈λ, I 〉 p +

1

2
〈QI , I 〉+ O3(p, I ).

We now perform one step of resonant normal form procedure: following
the Lie method, we seek for functions S(q, ϕ) and R(q, p, ϕ, I ) = O(p, I )
such that

{S , h}+ V + R = f , (2)

where V (q) is the periodic function obtained by averaging f (q, 0, ϕ, 0)
with respect to the angles ϕ:

V (q) = f (q, 0, ·, 0) =
1

(2π)n

∫
Tn

f (q, 0, ϕ, 0)dϕ, q ∈ T.
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Single resonance normal form Implementing one step

The construction of S and R is easily carried out: assuming a Diophantine
condition on ω∗, one first solves the equation

〈ω∗, ∂ϕS〉+ V = f (·, 0, ·, 0)

with the help of standard small divisors estimates, and then one takes R
simply by fitting equation (2). The time-1 symplectic flow Φ of the
generating Hamiltonian εS leads to

H ◦ Φ = H + {H, εS}+ O
(
ε2
)

= h + ε(V + R) + O
(
ε2
)

= H0 + H1,

with

H0(q, p, I ; ε) = 〈ω∗, I 〉+
p2

2
+ εV (q) + 〈λ, I 〉 p +

1

2
〈QI , I 〉 ,

H1(q, p, ϕ, I ; ε) = εR(q, p, ϕ, I ) + O3(p, I ) + O
(
ε2
)
.

Note: ω∗ = λ = 0, V (q) = cos q − 1, H1 = O(εµ) in the Arnold example.
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Single resonance normal form Relation with Arnold example

This expression generalizes Arnold’s example.
Concerning V , except for degenerate cases, the function V (q) will have a
unique and nondegenerate maximum q0; we denote α2 = −V ′′(q0) > 0.
Then, for ε > 0, the 1-degree-of-freedom Hamiltonian

P(q, p; ε) =
p2

2
+ εV (q),

has a saddle point in (q0, 0), with (homoclinic) separatrices. The case
ε < 0 is analogous, provided one considers a minimum instead of a
maximum. Then, the Hamiltonian H0 has whiskered tori with coincident
whiskers associated to this saddle point.
Note that H0 constitutes a Hamiltonian situated between the unperturbed
Hamiltonian h and the perturbed one H, which possesses hyperbolic
invariant tori but their whiskers still coincide.
Note also that, in general, H0 is not an uncoupled Hamiltonian because of
the coupling term 〈λ, I 〉 p.
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Single resonance normal form Introducing µ =
√
ε

The Lyapunov exponents of the saddle point of the “pendulum” P are
±
√
εα, which tend to zero for ε→ 0+.

To have fixed Lyapunov exponents, we can replace p, I by
√
εp,
√
εI .

The new system is still Hamiltonian if we divide the Hamiltonian by ε
(making in this way a change of time scale by a factor

√
ε):

H0 = 〈ω, I 〉+
p2

2
+ V (q) + 〈λ, I 〉 p +

1

2
〈QI , I 〉 , (3)

H1 = R
(
x ,
√
εy , ϕ,

√
εI
)

+
1

ε
O3

(√
εy ,
√
εI
)

+ O (ε) = O(µ), (4)

where

ω =
ω∗√
ε
, µ =

√
ε.
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Hyperbolic Hamiltonians Regular and singular case

For ε→ 0+, the study of the Hamiltonian (3–4) is a singular perturbation
problem, due to the fast frequencies ω = ω∗/

√
ε in the unperturbed

Hamiltonian H0. We are thus confronted with a singular system, often
referred to as weakly hyperbolic, and also called a-priori stable
[Chierchia-Gallavotti94] . In fact, this case can be referred to as totally
singular, because all the frequencies are fast.

The singular problem can be avoided if one considers independent
parameters, namely a fixed ε > 0 (that is, a fixed ω in (3)) and µ→ 0. In
such a case, the system (3–4) has the property that the hyperbolicity and
the homoclinic orbits are present in the unperturbed Hamiltonian (µ = 0),
and are simply perturbed for |µ| small. In this case, we are confronted with
a regular or strongly hyperbolic system, or also a-priori unstable.
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Hyperbolic Hamiltonians Poincaré-Arnold-Melnikov

This strategy of keeping ε > 0 fixed and letting µ→ 0 was introduced by
Poincaré in 1889 and followed in Arnold’s example to avoid dealing with a
singular perturbation problem.

Unfortunately, the exponentially small splitting of separatrices predicted by
a direct application of the Poincaré-Arnold-Melnikov (PMA) method

Splitting distance = ε PMA prediction + O(εµ)

when the PMA prediction = O
(
e−c/ε

a)
could then be justified only for µ

exponentially small in ε.
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Arnold’s proof Phase space for ε = 0

H(q, p, ϕ, I , s) =
1

2
p2 + ε(cos q − 1) +

1

2
I 2 + εµf (q)g(ϕ, s)

f (q) = cos q − 1, g(ϕ, s) = sinϕ+ cos s,

Figure: Phase Space - Unperturbed problem for ε = 0
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Arnold’s proof Invariant sets for ε = 0

Invariant tori (2D)

T̃I = {(0, 0, I , ϕ, s) : (ϕ, s) ∈ T2}

Invariant manifolds (3D):

W s T̃I = W uT̃I = {(q0(
√
ετ),
√
εp0(
√
ετ), I , ϕ, s) : τ ∈ R, (ϕ, s) ∈ T2}

where
q0(t) = 4 arctan e±t , p0(t) = 2/cosh t.

is the separatrix for positive p of the standard pendulum

P(q, p) = p2/2 + cos q − 1.
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Arnold’s proof Mechanism for small ε > 0

s

i

phiq

p

nhim

eps

e2

e1

e2

By the special form of the perturbation, T̃I persist to T̃I
ε

= T̃I
W s T̃I

ε
and W uT̃I

ε
are ε-close to the unperturbed ones.

Using Poincaré-Melnikov theory, W s T̃I
ε
t W uT̃I

ε
with an angle of

size e−π/(2
√
ε).

Therefore W s T̃ εIi t W uT̃ εIi+1
for |Ii − Ii+1| ≤ e−π/(2

√
ε) and a

shadowing (transition chain mechanism) gives the diffusion path.
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Arnold’s proof Main drawbacks of the proof

Minor 4 pages paper in Dokl. Akad. Nauk SSSR. “The details of
the proof must be formidable, although the idea of the proof
is clearly outlined.” (J. Moser in the MathSciNet review)

Fixable The perturbation maintains fixed all the invariant tori TI . In
general, there appear gaps around resonant tori (rational I )
which prevent W s T̃ εIi t W uT̃ εIi+1

because T̃ εIi and T̃ εIi+1
are

too far. The Scattering map can fix it.

Major The exponentially small size of the splitting e−π/(2
√
ε)

computed from a direct application of the PMA method is
much less than the Nekhoroshev estimates e−π/(2ε1/4).

Major Arnold example only shows global instability along a single
resonance, where the associated normal form is integrable,
but does not deal with multiple resonances, where the
normal form is not integrable.
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Arnold’s proof Main drawbacks of the proof

Exponentially small splitting of separatrices

The exponentially small splitting of separatrices was already found by
Poincaré in 1890, and first addressed in 1984 by Neishtadt with upper
bounds using normal forms and by Lazutkin with asimptotic estimates
using complex parameterizations of the stable and unstable invariant
manifolds.

Proofs of its asymptotic behavior for the rapidly forced pendulum or other
rapidly oscillating periodic perturbations in
[D-Seara92,Gelfreich94,Fontich93-95,Sauzin95,Treschev97,D-
Seara97,Gelfreich97,Baldomá-Fontich04-05,Guardia-Olivé-
Seara10,Baldomá-Fontich-Guardia-Seara12]

For maps, upper exponentially small estimates in [Fontich-Simó90]] and
asymptotic estimates in
[D-Raḿırez-Ros98-99,Simó-Vieiro09,Mart́ın-Sauzin-Seara11]
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Arnold’s proof Main drawbacks of the proof

Exponentially small splitting of separatrices

In the rapidly quasiperiodically forced pendulum, the rôle of the arithmetic
properties was detected in [Simó94] , and established in
[D-Gelfreich-Seara-Jorba97] .

For n-dimensional whiskered tori of a Hamiltonian with n + 1 degrees of
freedom, the splitting potential and Melnikov potential were introduced
[Eliasson94,D-Gutiérrez00] , sharp exponentially small upper bounds were
given in [D-Gutiérrez-Seara04] , and asymptotic estimates in
[Lochak-Marco-Sauzin03,D-Gutiérrez04,D-GonchenkoGutiérrez14-16] .

The multidimensional separatrix map introduced by Treschev in 2002
requires more study.
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A priori unstable systems A model

We consider a 2π-periodic in time perturbation of a pendulum and a rotor
described by the non-autonomous Hamiltonian,

Hε(p, q, I , ϕ, t) = H0(p, q, I ) + εh(p, q, I , ϕ, t; ε)
= P±(p, q) + 1

2 I
2 + εh(p, q, I , ϕ, t; ε)

(5)

where (p, q, I , ϕ, t) ∈ (R× T)2 × T and

P±(p, q) = ±
(

1

2
p2 + V (q)

)
(6)

and V (q) is a 2π-periodic function. We will refer to P±(p, q) as the
pendulum.
Note. This model just comes from the single resonance normal form. The
perturbation is arbitrary.
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A priori unstable systems Global instability

Theorem (D-Llave-Seara06)

Consider the Hamiltonian (5) where V and h are uniformly Cr+2 for
r ≥ r0, sufficiently large. Assume also that

H1 The potential V : T→ R has a unique global maximum at q = 0
which is non-degenerate. Denote by (q0(t), p0(t)) an orbit of the
pendulum P±(p, q) homoclinic to (0, 0).

H2 The Melnikov potential, associated to h (and to the homoclinic orbit
(p0, q0)):

L(I , ϕ, s) = −
∫ +∞

−∞
(h(p0(σ), q0(σ), I , ϕ+ Iσ, s + σ; 0)

−h(0, 0, I , ϕ+ Iσ, s + σ; 0))dσ
(7)

satisfies concrete non-degeneracy conditions.

H3 The perturbation term h satisfies concrete non-degeneracy conditions.

Amadeu Delshams (UPC) Global instability and scattering maps Jan. 29-Feb. 2, 2018 25 / 118



A priori unstable systems Global instability

Then, there is ε∗ > 0 such that for 0 < ε < ε∗, and for any interval [I ∗−, I
∗
+],

there exists a trajectory x̃(t) of the system (5) such that for some T > 0,

I (x̃(0)) ≤ I ∗−; I (x̃(T )) ≥ I ∗+.

Remark Arbitrary excursions in the I variable can also be realized.
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A priori unstable systems Genericity of Global instability

Hypotheses H1, H2 and H3 are C2 generic, so, the following short version
of the Theorem also holds:

Theorem (D-Huguet09)

Consider the Hamiltonian (5) and assume that V and h are Cr + 2
functions which are C2 generic, with r > r0, large enough. Then there is
ε∗ > 0 such that for 0 < |ε| < ε∗ and for any interval [I ∗−, I

∗
+], there exists

a trajectory x̃(t) of the system with Hamiltonian (5) such that for some
T > 0

I (x̃(0)) ≤ I ∗−; I (x̃(T )) ≥ I ∗+.

Remark A (non optimal) value of r0 which follows from our argument is
r0 = 242.

Amadeu Delshams (UPC) Global instability and scattering maps Jan. 29-Feb. 2, 2018 27 / 118



A priori unstable systems A multidimensional model

Consider a periodic in time perturbation of n pendula and a d-dimensional
rotor described by the non-autonomous Hamiltonian,

H(p, q, I , ϕ, t, ε) = P(p, q) + h(I ) + εQ(p, q, I , ϕ, t, ε), (8)

with P(p, q) =
∑n

j=1 Pj(pj , qj), Pj(pj , qj) = ±
(

1
2p

2
j + Vj(qj)

)
, where

I ∈ I ⊂ Rd , ϕ ∈ Td , I an open set, p, q ∈ Rn, t ∈ T1, and Pj(pj , qj) is a
pendulum for the saddle variables pj , qj . For ε = 0, the d-dimensional
action I remains constant. Under similar hypotheses as for n = d = 1,

Theorem (D-Llave-Seara12)

For every δ > 0, there exists ε0 > 0, such that for every 0 < |ε| < ε0,
given I± ∈ I,there exists a solution x̃(t) of (8) and T > 0, such that

|I (x̃(0))− I−| ≤ Cδ and |I (x̃(T ))− I+| ≤ Cδ (9)

Amadeu Delshams (UPC) Global instability and scattering maps Jan. 29-Feb. 2, 2018 28 / 118



A priori unstable systems A multidimensional model

One can forget about δ and prescribe arbitrary paths on a set I∗.
This set I∗ is described precisely in the course of the proof, and is
determined by the non-degeneracy assumptions. The main idea is
that I∗ is obtained from the domain of definition, just eliminating
some sets of codimension 2, like double resonances, from the open set
where the intersection of stable and unstable manifolds of a normally
hyperbolic invariant manifold is transversal.

Codimension 2 objects do not separate the regions and can be
contoured so that they do not obstruct the change along the paths. It
seems that such contouring trajectories close to double resonances are
inferred from some movies related to numerical experiments in
[Gelfreich-Simó-Vieiro13] .
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A priori unstable systems A multidimensional model
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Other contributions

This problem of instability, also called Arnold diffusion, was posed first by
Arnold in 1964, and there have been some other contributions, using
geometrical or variational methods:
[Lochak92] , [Chierchia-Gallavotti94-98] , [Bessi-Chierchia-Valdinoci01]
[Berti-Biasco-Bolle03] , [Marco-Sauzin03] , [Mather04] , [Cheng-Yan04] ,
[Gidea-Llave06] , [Piftankin-Treschev07] , [Kaloshin-Levi08] , [ChengY09] ,
[Bernard-Kaloshin-Zhang16] , [Zhang11] , [Mather12] , [Treschev12] ,
[Gelfreich-Simó-Vieiro13] , [GelfreichT17] , [Gidea-Llave-Seara14] ,
[Kaloshin-Zhang15] , [Lazzarini-Marco-SauzinS15] ,
[Davletshin-Treschev16] , [Marco16] , [Gidea-Marco17] , [Cheng17] .



A priori unstable systems Idea of the proof

The main idea of the proof is to use the two (or more) dynamics on Λ̃.

Find a big invariant saddle object: a NHIM (normally hyperbolic
invariant manifold: a global version of a center manifold) Λ̃ with
transverse associated stable and unstable manifolds along some
homoclinic manifold Γ: Wu(Λ̃) tΓ Ws(Λ̃).

Compute the invariant objects (typically tori T ) which may prevent
instability for the inner dynamics of the NHIM.

Compute an scattering map S = SΓ : H− ⊂ Λ̃→ H+ ⊂ Λ̃ on the
NHIM associated to Γ and consider it as an outer dynamics on the
NHIM (a second dynamics on Γ).

Check that S(TIi ) t TIi+1
for a sequence of tori {TIi}Ni=1 with

|IN − I1| = O(1), and construct a transition chain of whiskered tori,
i.e. Wu(TIi ) tWs(TIi+1

).

Standard shadowing methods provide an orbit that follows closely the
transition chain.
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The a priori unstable system The result for 2 + 1
2

d.o.f.

Consider a pendulum and a rotor plus a time periodic perturbation
depending on two harmonics in the variables (ϕ, s):

Hε(p, q, I , ϕ, s) = ±
(
p2

2
+ cos q − 1

)
+

I 2

2
+ εh(q, ϕ, s) (10)

h(q, ϕ, s) = f (q)g(ϕ, s), f (q) = cos q,

g(ϕ, s) = a1 cos(k1ϕ+ l1s) + a2 cos(k2ϕ+ l2s),
(11)

for some k1, k2, l1, l2 ∈ Z.

Theorem

Assume that a1a2 6= 0 and
∣∣∣k1 k2
l1 l2

∣∣∣ 6= 0 in (10)-(11). Then, for any I ∗ > 0,

there exists ε∗ = ε∗(I ∗, a1, a2) > 0 such that for any ε, 0 < ε < ε∗, there
exists a trajectory (p(t), q(t), I (t), ϕ(t)) such that for some T > 0

I (0) ≤ −I ∗ < I ∗ ≤ I (T ).

Remark: I (t) ≡ constant for ε = 0.
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The a priori unstable system Goals

To review the construction of scattering maps initiated in
[D-Llave-Seara00] , designed to detect global instability.

To compute explicitly several scattering maps to prove global
instability for the action I for any ε > 0 small enough.

To estimate the time of diffusion in some cases (at least for
k1 = l2 = 1 and l1 = k2 = 0).

To play with the parameter µ = a1/a2 to prove global instability for
any value of µ 6= 0,∞.

To describe bifurcations of the scattering maps.

To get a glimpse of the 3 + 1
2 degrees of freedom case.
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The a priori unstable system Assumptions and Reduction

It is easy to check that if

∆ := k1l2 − k2l1 = 0 or a1 = 0 or a2 = 0

there is no global instability for the variable I .

If ∆a1a2 6= 0, after some rational linear changes in the angles, we only
need to study two cases:

The first (and easier) case [D-Schaefer17]

g(ϕ, s) = a1 cosϕ+ a2 cos s

The second case [D-Schaefer18]

g(ϕ, σ) = a1 cosϕ+ a2 cosσ,

where σ = ϕ− s.
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The a priori unstable system The unperturbed system

We deal with an a priori unstable Hamiltonian [Chierchia-Gallavotti94] .

In the unperturbed case ε = 0, the Hamiltonian H0 is integrable formed by
the standard pendulum plus a rotor

H0(p, q, I , ϕ, s) = ±
(
p2

2
+ cos q − 1

)
+

I 2

2
.

I is constant: 4I := I (T )− I (0) ≡ 0.

For any 0 < ε� 1, there is a finite drift in the action of the rotor I :
4I = O(1), so we have global instability.

In short, this is is also frequently called Arnold diffusion.
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The a priori unstable system Paths of diffusion

Basically, we ensure the Arnold diffusion performing the following scheme:

To construct iterates under several Scattering maps and the Inner
map, giving rise to diffusing pseudo-orbits.

To use previous results about Shadowing [Fontich-Mart́ın00] ,
[Gidea-Llave-Seara14] , for ensuring the existence of real orbits close
to the pseudo-orbits.
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The a priori unstable system Two dynamics in the NHIM

We have two important dynamics associated to the system: the inner and
the outer dynamics on a large invariant object Λ̃:

Λ̃ = {(0, 0, I , ϕ, s); I ∈ [−I ∗, I ∗] , (ϕ, s) ∈ T2},

which is a 3D Normally Hyperbolic Invariant Manifold (NHIM) with
associated 4D stable W s

ε (Λ̃) and unstable W u
ε (Λ̃) invariant manifolds.

The inner dynamics is the dynamics restricted to Λ̃. (Inner map)

The outer dynamics is the dynamics along the invariant manifolds to
Λ̃. (Scattering map)

Remark: Due to the form of the perturbation, Λ̃ = Λ̃ε .
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Inner dynamics For the first case g(ϕ, s)

For the first case g(ϕ, s) = a1 cosϕ+ a2 cos s, the inner dynamics is
described by the Hamiltonian systems with the Hamiltonian

K (I , ϕ, s) =
I 2

2
+ ε (a1 cosϕ+ a2 cos s) .

In this case the inner dynamics is integrable.
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Inner dynamics For g(ϕ, σ), σ = ϕ− s

For g(ϕ, σ), the inner dynamics is by the Hamiltonian

K (I , ϕ, σ) =
I 2

2
+ ε (a1 cosϕ+ a2 cosσ) ,

where σ = ϕ− s. The system associated to this Hamiltonian is not
integrable and two resonances arise in I = 0 and I = 1.
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Outer dynamics Scattering map

Let Λ̃ be a NHIM with invariant manifolds intersecting transversally along
a homoclinic manifold Γ. A scattering map is a map S defined by
S(x̃−) = x̃+ if there exists z̃ ∈ Γ satisfying

|φεt (z̃)− φεt (x̃∓)| −→ 0 as t −→ ∓∞

that is, W u
ε (x̃−) intersects transversally W s

ε (x̃+) in z̃ .
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Outer dynamics Scattering map

S is symplectic and exact [D-Llave-Seara08] and takes the form:

Sε(I , ϕ, s) =

(
I + ε

∂L∗

∂θ
(I , θ) +O(ε2), θ − ε ∂L

∗

∂I
(I , θ) +O(ε2), s

)
,

where θ = ϕ− Is and L∗(I , θ) is the Reduced Poincaré function, or more simply
in the variables (I , θ):

Sε(I , θ) =

(
I + ε

∂L∗

∂θ
(I , θ) +O(ε2), θ − ε ∂L

∗

∂I
(I , θ) +O(ε2)

)
,

The variable s remains fixed under Sε: it plays the role of a parameter

Up to first order in ε, Sε is the −ε-time flow of the Hamiltonian L∗(I , θ)

The scattering map jumps O(ε) distances along the level curves of L∗(I , θ)
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Outer dynamics The Melnikov Potential

To get a scattering map we search for homoclinic orbits to Λ̃ε

Proposition

Given (I , ϕ, s) ∈ [−I ∗, I ∗] × T2, assume that the real function

τ ∈ R 7−→ L(I , ϕ− I τ, s − τ) ∈ R

has a non degenerate critical point τ∗ = τ(I , ϕ, s), where

L(I , ϕ, s) =

∫ +∞

−∞
(cos q0(σ)− cos 0) g(ϕ+ Iσ, s + σ; 0)dσ.

Then, for 0 < |ε| small enough, there exists a transversal homoclinic point z̃ to

Λ̃ε, which is ε-close to the point z̃∗(I , ϕ, s) = (p0(τ∗), q0(τ∗), I , ϕ, s) ∈ W 0(Λ̃):

z̃ = z̃(I , ϕ, s) = (p0(τ∗) + O(ε), q0(τ∗) + O(ε), I , ϕ, s) ∈ W u(Λ̃ε) t W s(Λ̃ε).
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Outer dynamics The Melnikov Potential

In our model q0(t) = 4 arctan et , p0(t) = 2/cosh t is the separatrix for
positive p of the standard pendulum P(q, p) = p2/2 + cos q − 1.

For g(ϕ, s) = a1 cosϕ+ a2 cos s, the Melnikov potential becomes

L(I , ϕ, s) = A1(I ) cosϕ+ A2 cos s,

where A1(I ) =
2π I a1

sinh
(
I π
2

) and A2 =
2π a2

sinh
(
π
2

) .

For g(ϕ, σ) = a1 cosϕ+ a2 cosσ (σ = ϕ− s), the Melnikov potential
becomes

L(I , ϕ, σ) = A1(I ) cosϕ+ A2(I ) cosσ,

where A1(I ) is as before but now A2(I ) =
2 (I − 1)π a2

sinh
(

(I−1)π
2

) .
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Outer dynamics The Melnikov Potential

The Melnikov potentials are similar in both cases.

Figure: The Melnikov Potential, µ = a1/a2 = 0.6, I = 1, g(ϕ, s).
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Outer dynamics Reduced Poincaré function

Finally, the function L∗(I , θ) can be defined:

Definition

The Reduced Poincaré function is

L∗(I , θ) = L(I , ϕ− I τ∗(I , ϕ, s), s − τ∗(I , ϕ, s)),

where θ = ϕ− I s.

Therefore the definition of L∗(I , θ) depends on the function τ∗(I , ϕ, s).

Amadeu Delshams (UPC) Global instability and scattering maps Jan. 29-Feb. 2, 2018 46 / 118



Outer dynamics The function τ ∗(I , ϕ, s)

From the Proposition given above, we look for τ∗ such that
∂L
∂τ (I , ϕ− I τ∗, s − τ∗) = 0.

Different view-points for τ∗ = τ∗(I , ϕ, s)

Look for critical points of L on the straight line, called NHIM line
R(I , ϕ, s) = {(ϕ− I τ, s − τ), τ ∈ R}.
Look for intersections between R(I , ϕ, s) = {(ϕ− I τ, s − τ), τ ∈ R}
and a crest which is a curve of equation

∂L
∂τ

(I , ϕ− I τ, s − τ)|τ=0 = 0.

Note that the crests are characterized by τ∗(I , ϕ, s) = 0.
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Outer dynamics Crests

Definition - Crests [D-Huguet11]

For each I , we call crest C(I ) the set of curves in the variables (ϕ, s) of equation

I
∂L
∂ϕ

(I , ϕ, s) +
∂L
∂s

(I , ϕ, s) = 0. (12)

which in our case can be rewritten as

g(ϕ, s): µα(I ) sinϕ+ sin s = 0, with α(I ) =
I 2 sinh( π

2
)

sinh( π I
2

)
, µ =

a1

a2
.

g(ϕ, σ = ϕ− s): µα(I ) sinϕ+ sinσ = 0, with α(I ) =
I 2 sinh(

(I−1)π
2

)

(I−1)2 sinh( π I
2

)
, µ =

a1

a2
.

For any I , the critical points of the Melnikov potential L(I , ·, ·) ((0, 0), (0, π),
(π, 0) and (π, π): one maximum, one minimum point and two saddle points)
always belong to the crest C(I ).

L∗(I , θ) is nothing else but L evaluated on the crest C(I ).

θ = ϕ− Is is constant on the NHIM line R(I , ϕ, s)
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Outer dynamics Geometrical interpretation

Figure: Level curves of L for µ = a1/a2 = 0.5, I = 1.2 and g(ϕ, s).
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Outer dynamics Geometrical interpretation

Understanding the behavior of the crests

⇓
Understanding the behavior of the Reduced Poincaré function

⇓
Understanding the Scattering map
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First case: g(ϕ, s) 0 < |µ| < 0.97

For |µα(I )| < 1, there are two crests CM,m(I ) parameterized by:

s = ξM(I , ϕ) = − arcsin(µα(I ) sinϕ) mod 2π (13)

ξm(I , ϕ) = arcsin(µα(I ) sinϕ) + π mod 2π

They are “horizontal” crests
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First case: g(ϕ, s) 0 < |µ| < 0.625

For each I , the NHIM line R(I , ϕ, s) and the crest CM,m(I ) has only one
intersection point.

The scattering map SM associated to the intersections between CM(I ) and
R(I , ϕ, s) is well defined for any ϕ ∈ T. Analogously for Sm, changing M to m. In
the variables (I , θ = ϕ− Is), both scattering maps SM, Sm are globally well defined.

(a) Level curves of L∗M(I , θ) (b) Level curves of L∗m(I , θ)
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First case: g(ϕ, s) 0.625 < |µ|

There are tangencies between CM,m(I , ϕ) and R(I , ϕ, s). For some value of
(I , ϕ, s), there are 3 points in R(I , ϕ, s) ∩ CM,m(I ).

This implies that there are 3 scattering maps associated to each crest with
different domains.(Multiple Scattering maps)
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First case: g(ϕ, s) 0.625 < |µ|

(c) The three types of level curves. (d) Zoom where the scattering maps
are different

Figure: Level curves of L∗M(I , θ), L∗(1)
M (I , θ) and L∗(2)

M (I , θ)
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First case: g(ϕ, s) |µ| > 0.97

For some values of I , |µα(I )| > 1, the two crests CM,m are parameterized by:

ϕ = ηM(I , s) = − arcsin(µα(I ) sin s) mod 2π (14)

ηm(I , s) = arcsin(µα(I ) sin s) + π mod 2π

They are “vertical” crests

Amadeu Delshams (UPC) Global instability and scattering maps Jan. 29-Feb. 2, 2018 55 / 118



First case: g(ϕ, s) |µ| > 0.97

For the values of I for which horizontal crests become vertical, it is not
always possible to prolong in a continuous way the scattering maps, so the
domain of the scattering map has to be restricted.

Figure: The level curves of L∗M(I , θ), µ = 1.5.

In green, the region where the scattering map SM is not defined.
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First case: g(ϕ, s) Highways

Definition: Highways

Highways are the level curves of L∗ such that

L∗(I , θ) =
2πa1

sinh(π/2)
.

The highways are “vertical” in the variables (ϕ, s)

We always have a pair of highways. One goes up, the other goes
down (this depends on the sign of µ = a1/a2)

The highways give rise to fast diffusing pseudo-orbits
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First case: g(ϕ, s) Highways

Figure: The scattering map jumps O(ε) distances along the level curves of
L∗(I , θ)
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First case: g(ϕ, s) An example of pseudo-orbit

Figure: In red: Inner map, blue: Scattering map, black: Highways
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First case: g(ϕ, s) Time of diffusion

An estimate of the total time of diffusion between −I ∗ and I ∗, along the highway, is

Td =
Ts

ε

[
2 log

(
C

ε

)
+O(εb)

]
, for ε→ 0, where 0 < b < 1,

with

Ts = Ts(I
∗, a1, a2) =

∫ I∗

0

− sinh(πI/2)

πa1I sinψh(I )
dI ,

where ψh = θ − Iτ∗(I , θ) is the parameterization of the highway L∗(I , ψh) = A2, and

C = C(I ∗, a1, a2) = 16 |a1|

(
1 +

1.465√
1− µ2A2

)

where A = maxI∈[0,I∗] α(I ), with α(I ) =
sinh( π

2
) I 2

sinh( π I
2

)
and µ = a1/a2.

Note: This estimate agrees with the upper bounds given in [Bessi-Chierchia-Valdinoci01]

and quantifies the general optimal diffusion estimate O
(

1

ε
log

1

ε

)
of

[Berti-Biasco-Bolle03] and [Treschev04] .
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Second case: g(ϕ, σ), σ = ϕ− s Main differences

In the second case:

For |µα(I )| < 1, there are two crests CM,m(I ) parameterized by
σ = ξM(I , ϕ) and ξm(I , ϕ). For |µα(I )| > 1, CM,m(I ) parameterized
by ϕ = ηM(I , σ) and ηm(I , σ). The crests lie on the plane (ϕ, σ)

There are no Highways.

For any value of µ = a1/a2 is possible to find Ih and Iv such that for
I = Ih the crests are horizontal and for I = Iv the crests are vertical.

For any value of µ there exists I such that the crests and some NHIM
line are tangent.There are always multiple scattering maps
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Second case: g(ϕ, σ), σ = ϕ− s Computation of τ ∗

From the definitions of R(I , ϕ, s) and C(I ), we have

R(I , ϕ, s) ∩ C(I ) = {(I , ϕ− I τ∗(I , ϕ, s), s − τ∗(I , ϕ, s))} .

Introducing

τ∗(I , θ) := τ∗(I , ϕ− Is), with θ = ϕ− Is = (1− I )ϕ+ Iσ,

one can see that on the plane (ϕ, σ = ϕ− s), the NHIM lines take the form

RI (ϕ, σ) = {(ϕ− I τ, σ − (I − 1)τ), τ ∈ R}

and that

RI (ϕ, σ) ∩ C(I ) = {(θ − I τ∗(I , θ), θ − (I − 1)τ∗(I , θ))} .

Therefore, the function τ∗(I , θ) is the time spent to go from a point (θ, θ)
in the diagonal σ = ϕ up to C(I ) with a velocity vector v = −(I , I − 1).

Amadeu Delshams (UPC) Global instability and scattering maps Jan. 29-Feb. 2, 2018 62 / 118



Second case: g(ϕ, σ), σ = ϕ− s Kinds of scattering maps

The choice of the concrete curve of the crest and therefore of τ∗(I , θ) is
very important and useful.

Figure: Going down along NHIM
lines Figure: The “lower” crest

Green zones: I increases under the scattering map.
Red zones: I decreases under the scattering map.
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Second case: g(ϕ, σ), σ = ϕ− s Kinds of scattering maps

Figure: Going up along NHIM lines Figure: The “upper” crest
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Second case: g(ϕ, σ), σ = ϕ− s Kinds of scattering maps

Figure: Minimal time
Figure: Minimal |τ∗| between
“lower” and “upper” crest
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Second case: g(ϕ, σ), σ = ϕ− s Piecewise smooth S(I , θ)

In this picture we show a combination of 3 scattering maps.

Figure: First intersection
Figure: Minimal |τ∗| between
CM(I ) and Cm(I )
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The a priori unstable system Results for 3 + 1
2

d.o.f.

Consider a pendulum and two rotors plus a time periodic perturbation
depending on three harmonics in the angles (ϕ1, ϕ2, ϕ3 = s):

Hε(p, q, I1, I2, ϕ1, ϕ2, s) = ±
(
p2

2
+ cos q − 1

)
+ h(I1, I2)

+εf (q) g(ϕ1, ϕ2, s), (15)

h(I1, I2) = Ω1I
2
1 /2 + Ω2I

2
2 /2, f (q) = cos q

g(ϕ1, ϕ2, s) = a1 cosϕ1 + a2 cosϕ2 + a3 cos s.
(16)

Theorem (Arnold diffusion for a two-parameter family)

Assume a1a2a3 6= 0 and |a1/a3|+ |a2/a3| < 0.625 in Hamiltonian
(15)+(16). Then, for any two actions I± and any δ there exists ε0 > 0
such that for every 0 < |ε| < ε0 there exists an orbit x̃(t) and T > 0 such
that

|I (x̃(0))− I−| ≤ δ and |I (x̃(T ))− I+| ≤ δ
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The a priori unstable system Results for 3 + 1
2

d.o.f.

For |a1/a3|+ |a2/a3| < 0.625 there are two horizontal crests CM,m(I ), and
both scattering maps SM, Sm are globally well defined.

Figure: Horizontal crests: a1/a3 = a2/a3 = 0.48 ,Ω1I1 = Ω2I2 = 1.219.

Diffusing orbits are found by shadowing orbits of both scattering maps
scattering maps and the inner dynamics.

Remark

Actually, we can prove that given any two actions I± and any path γ(s)
joining them in the actions space, there exists an orbit x̃(t) such that
I (x̃(t)) is δ-close to γ(Ψ(t)) for some parameterization Ψ.

Amadeu Delshams (UPC) Global instability and scattering maps Jan. 29-Feb. 2, 2018 68 / 118



The a priori unstable system Results for 3 + 1
2

d.o.f.

Theorem (Diffusion paths using only Scattering maps)

Assume a1a2a3 6= 0 and |a1/a3|+ |a2/a3| < 0.625 in Hamiltonian
(15)+(16). Given any two (I±, θ±) ∈ Ĩ, where

Ĩ = R2 × T2 \ {(0, 0, 0, 0), (0, 0, π, 0), (0, 0, 0, π), (0, 0, π, π)} ,

and any δ there exists ε0 > 0 such that for every 0 < |ε| < ε0 there is an
orbit (I i , θi )0≤i<N of the polyscattering map (S0,S1, S2):

(I i+1, θi+1) = S`(I
i , θi ), where ` ∈ {0, 1, 2},

such that ∣∣(I 0, θ0)− (I−, θ−)
∣∣ < δ and

∣∣∣(IN , θN)− (I+, θ+)
∣∣∣ < δ.
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The a priori unstable system Results for 3 + 1
2

d.o.f.

Theorem (Existence of Highways)

Assume a1a2a3 6= 0 and |a1/a3|+ |a2/a3| < 0.625 in Hamiltonian
(15)+(16). Given any 0 < cj < Cj , j = 1, 2, there is an orbit (I i , θi )0≤i<N

of the scattering map S0 such that∣∣I 0
j

∣∣ < cj and
∣∣∣INj ∣∣∣ > Cj , j = 1, 2.
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A priori chaotic systems geodesic flow

(Quasi)-periodic perturbations of geodesic flows

Theorem ([D-Llave-Seara06] )

Let M be a n-dimensional manifold, g a Cr metric on it (r sufficiently
large). Assume:

H1 There exists a closed geodesic “Λ” such that its corresponding
periodic orbit Λ̂ under the geodesic flow is hyperbolic.

H2 There exists another geodesic “γ” such that γ̂ is a transversal
homoclinic orbit to Λ̂.
That is, γ̂ is contained in the intersection of the stable and unstable
manifolds of Λ̂, W s

Λ̂
, W u

Λ̂
, in the unit tangent bundle.

Moreover, we assume that the intersection of the stable and unstable
manifolds of Λ̂ is transversal along γ̂. That is,

Tγ(t)W
s
Λ̂

+ Tγ(t)W
u
Λ̂

= Tγ(t)S1M, t ∈ R.
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A priori chaotic systems geodesic flow

Abundance of Hypoteses H1, H2

Hipotheses H1, H2 are abundant:

They are generic on T2 [Morse24]] , [Hedlund32]] , [Mather93]] .

They hold on any closed surface of genus bigger or equal than 2, if
r ≥ 2 + δ, δ > 0. [Katok82] ).

They are generic in the C2 topology for any closed surface
[Contreras-Paternain02] .
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A priori chaotic systems geodesic flow

(Quasi)-periodic perturbations of geodesic flows

Let ν ∈ Rd be Diophantine, r ∈ N be sufficiently large (depending on τ ,
the Diophantine exponent of ν).
Let g be a Cr metric on a compact manifold M, verifying hypotheses H1,
H2, and U : M × Td → R a generic Cr function.
Consider the time dependent Lagrangian

L(q, q̇, νt) =
1

2
gq(q̇, q̇)− U(q, νt), (17)

where gq denotes the metric in TqM.
Then, the Euler-Lagrange equation of L has a solution q(t) whose energy

E (t) =
1

2
gq(q̇(t), q̇(t)) + U(q(t), νt),

tends to infinity as t →∞.
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A priori chaotic systems The problem

The (planar) elliptic restricted three body problem (RPETB) describes the
motion q of a massless particle (a comet) under the gravitational field of
two massive bodies (the primaries, say the Sun and Jupiter) with mass
ratio µ revolving around their center of mass on elliptic orbits with
eccentricity εJ.

Typical models:

Sun–Jupiter–asteroid or comet: εJ = 0.048

Sun–Earth–Moon systems: εJ = 0.016

We search for trajectories of motion which show a large variation of the
angular momentum G = q × q̇.

So we search for global instability (“diffusion” is the term usually used) in
the angular momentum of this problem.
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A priori chaotic systems The Main Result

Theorem (The Main Result)

There exist two constants C > 0, c > 0 and µ∗ = µ∗(C , c) > 0 such that
for any 0 < εJ < c/C and 0 < µ < µ∗, and for any two values of the
angular momentum in the region C ≤ G ∗1 < G ∗2 ≤ c/εJ, there exists a
trajectory of the RPETB such that G (0) < G ∗1 , G (T ) > G ∗2 for some
T > 0.

If εJ = 0, the primaries revolve along circular orbits, and such
diffusion is not possible, since the (planar) restricted circular three
body problem (R3BP) is governed by an autonomous Hamiltonian
with 2 degrees-of-freedom.

This is not the case for the RPETB, which is a 2+1/2
degrees-of-freedom Hamiltonian system with time-periodic
Hamiltonian.
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Previous results Restricted 3 BP

Related results about oscillatory motions and diffusion for several
Restricted Three Body Problems:

Euler libration points: [Llibre-Mart́ınez-Simó85,
Capiński-Zgliczyński11, D-Gidea-Roldán13-16,
Capiński-Llave-Gidea16, Kepley-Mireless James17]

Collisions: [Bolotin06]

The (parabolic) infinity: [Llibre-Simó80] , [Xia93-94, Moser01,
Moeckel07] , [Mart́ınez-Pinyol94] , [Gorodetski-Kaloshin11] ,
[Guàrdia-Mart́ın-Seara12] , [Mart́ınez-Simó14]

Mean motion resonances: [Fejoz-Guàrdia-Kaloshin-Roldán14]

Aubry-Mather theory: [Galante-Kaloshin13]
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Setting of the problem The equations

The motion of the massless particle q (comet) is described by

d2q

dt2
= (1− µ)

qS − q

|qS − q|3
+ µ

qJ − q

|qJ − q|3

where 1− µ is the mass of the primary (Sun) at qS and µ the mass of the
primary (Jupiter) at qJ.
Introducing p = dq/dt, this is a 2+1/2 degree-of-freedom Hamiltonian
system with time-periodic Hamiltonian

Hµ(q, p, t; εJ) =
p2

2
− Uµ(q, t; εJ)

with self-potential

Uµ(q, t; εJ) =
1− µ

|q − qS(t, εJ)|
+

µ

|q − qJ(t, εJ)|

Parameters: 0 < µ, εJ < 1 small.

Amadeu Delshams (UPC) Global instability and scattering maps Jan. 29-Feb. 2, 2018 77 / 118



Setting of the problem Two body problem: Sun-comet

When µ = 0, there is no Jupiter in the equation of motion and the Sun is
fixed at the origin: qS = 0

The Sun qS and the comet q form a two-body problem with the

Hamiltonian H0(q, p, t; εJ) = H0(q, p) =
p2

2
− 1

|q|
=

p2

2
− U0(q).

The two–body problem is integrable, and there is no dependence on the
eccentricity εJ or the time t.
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Setting of the problem Equations of the primaries

qS = qS(t, εJ) = µr(cos f , sin f )

qJ = qJ(t, εJ) = −(1− µ)r(cos f , sin f )

with

r = r(t; εJ) =
1− ε2

J

1 + εJ cos f
,

df

dt
=

(1 + εJ cos f )2

(1− ε2
J)3/2

,

where f = f (t; εJ) is the true anomaly. If q = ρ(cosα, sinα),

|q − qS|2 = ρ2 − 2µrρ cos(α− f ) + µ2r2,

|q − qJ |2 = ρ2 + 2(1− µ)rρ cos(α− f ) + (1− µ)2r2.

Remark Also

r = r(t; εJ) = 1− εJ cosE , t = E − εJ sinE ,

where E is the eccentric anomaly.
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Setting of the problem Polar coordinates

Performing a standard polar-canonical change of variables
(q, p) 7−→ (ρ, α,Pρ,Pα)

q = (ρ cosα, ρ sinα), p =

(
Pρ cosα− Pα

ρ
sinα,Pρ sinα +

Pα
ρ

cosα

)
the Hamiltonian becomes

H∗µ(ρ, α,Pρ,Pα, t; εJ) =
P2
ρ

2
+

P2
α

2ρ2
− U∗µ(ρ, α, t; εJ)

with a self-potential U∗µ

U∗µ(ρ, α, t; εJ) = Uµ(ρ cosα, ρ sinα, t; εJ) =
1

ρ
+ O(µ).
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Setting of the problem Polar coordinates

From now on we will write

G = Pα, y = Pρ,

so that Hamiltonian (80) becomes

H∗µ(ρ, α, y ,G , t; εJ) =
y2

2
+

G 2

2ρ2
− U∗µ(ρ, α, t; εJ).

Remark

In the (planar) circular case εJ = 0 (RTBP), r = 1 and f = t, and
|q − qS|, |q − qJ| depend on the time t and the angle α just through their
difference α− t. As a consequence, U∗µ(ρ, α, t; 0) as well as
H∗µ(ρ, α, y ,G , t; 0) depend also on t and α just through the same
difference α− t, the sinodic angle. This implies that the Jacobi constant
H∗ + G is a first integral of the system.
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Setting of the problem McGehee coordinates

Through McGehee non-canonical change of variables, for x > 0,

ρ =
2

x2

the infinity ρ =∞ is sent to the origin x = 0 and the equations become

dx

dt
= −1

4
x3y

dy

dt
=

1

8
G 2x6 − x3

4

∂Uµ
∂x

dα

dt
=

1

4
x4G

dG

dt
=
∂Uµ
∂α

,

where the self-potential Uµ is given now by

Uµ(x , α, t; εJ) = U∗µ(2/x2, α, t; εJ) =
x2

2

(
1− µ
σS

+
µ

σJ

)
with

|q − qS|2 = σ2
S = 1− µrx2 cos(α− f ) +

1

4
µ2r2x4,

|q − qJ|2 = σ2
J = 1 + (1− µ)rx2 cos(α− f ) +

1

4
(1− µ)2r2x4.
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Setting of the problem The b3-symplectic structure

Under McGehee change of variables ρ = 2/x2 for x > 0,

dρ ∧ dy + dα ∧ dG is transformed to ω = − 4

x3
dx ∧ dy + dα ∧ dG

which is a b3-symplectic form, the new Hamiltonian reads as

Hµ(x , α, y ,G , t; εJ) =
y2

2
+

x4G 2

8
− Uµ(x , α, t; εJ),

and the the Hamiltonian equations become

dx

dt
= −x3

4

(
∂Hµ
∂y

)
dy

dt
= −x3

4

(
−∂Hµ
∂x

)
dα

dt
=

∂Hµ
∂G

dG

dt
= −∂Hµ

∂α
.

which can be written as dz/dt = {z ,Hµ} in terms of the Poisson bracket

{f , g} = −x3

4

(
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)
+
∂f

∂α

∂g

∂G
− ∂f

∂G

∂g

∂α
.
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Setting of the problem The b3-symplectic structure

Some sources of bm-symplectic structures can be found in [Scott13,
Kiesenhofer-Miranda-Scott15, Guillemin-Miranda-Weitsman17-18] .

Other examples can be found in [Guardia-Mart́ın-Seara16,
D-Kiesenhofer-Miranda17, Braddell-D-Miranda-Oms-Planas17] .

New examples in [Baldomá-Fontich-Mart́ın18] .
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The Kepler problem (µ = 0)
The (parabolic) infinity

manifold

For µ = 0 and G > 0, Hamiltonian H0 becomes Duffing Hamiltonian:

H0(x , y ,G ) =
y2

2
+

x4G 2

8
− U0(x) =

y2

2
+

x4G 2

8
− x2

2

H0 is autonomous and independent of εJ and α. Its associated equations
are

dx

dt
= −1

4
x3y

dy

dt
=

1

8
G 2x6 − 1

4
x4

dα

dt
=

1

4
x4G

dG

dt
= 0

The angular momentum G is a conserved quantity, G > 0 from now on.
The phase space (x , α, y ,G ) ∈ R≥0 × T× R× R+ includes the set of
equilibrium points

E∞ = {z = (x = 0, α, y ,G ) ∈ R≥0 × T× R× R+}.
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The Kepler problem (µ = 0)
The (parabolic) infinity

manifold

x

y

h = 0

h > 0

h < 0

Figure: Level curves of H0 in the (x ≥ 0, y) plane, for fixed G > 0
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The Kepler problem (µ = 0)
The (parabolic) infinity

manifold

For any fixed α ∈ T,G ∈ R,

Λα,G = {(0, α, 0,G )}

is a parabolic equilibrium point, which is topologically equivalent to a
saddle point, since it possesses stable and unstable 1D-invariant manifolds.
The union of such points is the 2D-(symplectic) manifold of equilibrium
points

Λ∞ =
⋃
α,G

Λα,G .

which is the (parabolic) infinity manifold for the Kepler problem.
As we will deal with a time-periodic Hamiltonian, it is natural to work in
the extended phase space

z̃ = (z , s) = (x , α, y ,G , s) ∈ R≥0 × T× R× R+ × T

just by writing s instead of t in the Hamiltonian and adding the equation

ds

dt
= 1
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The Kepler problem (µ = 0)
The (parabolic) infinity

manifold

The extended versions of the invariant sets Λα,G , Λ∞ for the Kepler
problem are the 2π-periodic orbits with motion ds/dt = 1

Λ̃α,G = {z̃ = (0, α, 0,G , s), s ∈ T},
and the 3D-invariant manifold (the “parabolic” infinity manifold)

Λ̃∞ =
⋃
α,G

Λ̃α,G = {(0, α, 0,G , s), (α,G , s) ∈ T×R+ ×T},' T×R+ ×T,

which is topologically equivalent to a normally hyperbolic invariant
manifold (TNHIM).
Parameterizing the points in Λ̃∞ by

x̃0 = x̃0(α,G , s) = (x0(α,G ), s) = (0, α, 0,G , s) ∈ Λ̃∞ ' T× R+ × T

the inner dynamics on Λ̃∞ is trivial, since it is given by the dynamics on
each periodic orbit Λ̃α,G :

φ̃t,0(x̃0) = (0, α, 0,G , s + t) = (x0(α,G ), s + t) = x̃0(α,G , s + t),

where we denote by φ̃t,µ the flow of our system in the extended phase
space.
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The Kepler problem (µ = 0) The separatrix

The equilibrium points Λα,G have stable and unstable 1D-invariant
manifolds which coincide:

γα,G = W u(Λα,G ) = W s(Λα,G )

=

{
z = (x , α̂, y ,G ), H0(x , y ,G ) = 0, α̂ = α− G

∫
H0=0

x

y
dx

}
,

whereas the 2D-manifold of equilibrium points Λ∞ has stable and unstable
3D-invariant manifolds which coincide and are given by

γ = W u(Λ∞) = W s(Λ∞) = {z = (x , α, y ,G ), H0(x , y ,G ) = 0}.
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The Kepler problem (µ = 0) The separatrix

In the extended phase space, the surface

γ̃α,G = W u(Λ̃α,G ) = W s(Λ̃α,G )

=

{
z̃ = (x , α̂, y ,G , s), s ∈ T, H0(x , y ,G ) = 0, α̂ = α− G

∫
H0=0

x

y
dx

}
is a 2D-homoclinic manifold to the periodic orbit Λ̃α,G . The 4D-stable and
unstable manifolds of the infinity manifold Λ̃∞ coincide along the
4D-homoclinic invariant manifold (the separatrix), which is just the union
of the homoclinic surfaces γ̃α,G :

γ̃ = W u(Λ̃∞) = W s(Λ̃∞) =
⋃
α,G

γ̃α,G

= {z̃ = (x , α, y ,G , s), (α,G , s) ∈ T× R+ × T, H0(x , α, y ,G ) = 0}
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The Kepler problem (µ = 0) Separatrix parameterization

The homoclinic solutions to the periodic orbit Λ̃α,G are given by

xh(t;G ) =
2

G (1 + τ2)1/2
yh(t;G ) =

2τ

G (1 + τ2)

αh(t;α,G ) = α + π + 2 arctan τ Gh(t;G ) = G

sh(t; s) = s + t ,

where α and G are the 2 free parameters and the relation between t and τ
is

t =
G 3

2

(
τ +

τ3

3

)
which is equivalent to

dt

dτ
=

2G

x2
,

Due to the factor −x3/4 in front of the equations, the convergence along
the separatrix to the infinity manifold is power-like in τ and t:

xh, yh,
α− αh + π

G
∼ 2

Gτ
∼ 2

3
√
±6t

, τ, t → ±∞.
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The Kepler problem (µ = 0) Separatrix parameterization

Introducing the notation

z̃0 = z̃0(σ, α,G , s) = (z0(σ, α,G ), s)=(xh(σ;G ), αh(σ;α,G ), yh(σ;G ),G , s)

we can parameterize any homoclinic surface γ̃α,G as

γ̃α,G = {z̃0 = z̃0(σ, α,G , s) = (z0(σ, α,G ), s), σ ∈ R, s ∈ T}.

and the 4-dimensional separatrix γ̃ = W (Λ̃∞) as

γ̃ = {z̃0 = z̃0(σ, α,G , s) = (z0(σ, α,G ), s), σ ∈ R,G ∈ R+, (α, s) ∈ T2}.

The motion on γ̃ and Λ̃∞ is given by

φ̃t,0(z̃0) = z̃0(σ + t, α,G , s + t) = (z0(σ + t, α,G ), s + t)

φ̃t,0(x̃0) = (0, α, 0,G , s + t) = (x0(α,G ), s + t) = x̃0(α,G , s + t),

and the following asymptotic formula follows:

φ̃t,0(z̃0)− φ̃t,0(x̃0) = (z0(σ + t, α,G ), s + t)− (x0(α,G ), s + t) −−−−→
t→±∞

0.
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The Kepler problem (µ = 0) The scattering map

The scattering map S̃ describes the homoclinic orbits to the infinity
manifold Λ̃∞. Given x̃−, x̃+ ∈ Λ̃∞, we define

S̃µ(x̃−) := x̃+

if there exists z̃∗ ∈W u
µ (Λ̃∞) ∩W s

µ(Λ̃∞) such that

φ̃t,µ(z̃∗)− φ̃t,µ(x̃±) −→ 0 for t → ±∞.

In the case µ = 0 the previous asymptotic relation

φ̃t,0(z̃0)− φ̃t,0(x̃0) = (z0(σ + t, α,G ), s + t)− (x0(α,G ), s + t) −−−−→
t→±∞

0.

implies S̃0(x̃0) = x̃0 so that that the scattering map S̃0 : Λ̃∞ −→ Λ̃∞ is
the identity.
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The ERTBP (µ > 0) Λ̃∞, W s
µ(Λ̃∞) and W u

µ (Λ̃∞)

For µ > 0, the set E∞ remains invariant as well as infinity manifold Λ̃∞,
which is again a TNHIM, as well as all the periodic orbits Λ̃α,G .

The inner dynamics on Λ̃∞ is the same as in the case µ = 0, so that the
parametrization x̃0 as well as its trivial dynamics remain the same.

From [McGehee73, Guardia-Mart́ın-Seara-Sabbagh17] we know that
W s
µ(Λ̃∞) and W u

µ (Λ̃∞) exist for µ small enough and are 4-dimensional in
the extended phase space.

The existence of scattering maps will depend on the transversal
intersections between these two manifolds.
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The ERTBP (µ > 0) The Melnikov potential

Introduce now [D-Gutiérrez00, D-Llave-Seara06] the Melnikov potential
L : Λ̃∞ −→ R by

L(α,G , s; εJ) =

∫ ∞
−∞

∆U0(xh(t;G ), αh(t;α,G ), s + t; εJ) dt,

where ∆U0 is defined by

∆U0(x , α, s; εJ) :=
∂Uµ
∂µ

∣∣∣∣∣
µ=0

(x , α, s; εJ) = O(x4) as x → 0.

The asymptotics above follows from the asymptotic behavior of the
solutions along the separatrix and of the self potential close to the
parabolic infinity manifold, and guarantees that this integral is absolutely
convergent.
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The ERTBP (µ > 0) W s
µ(Λ̃∞) t W u

µ (Λ̃∞)

Proposition (Transverse homoclinic points to the infinite manifold Λ̃∞)

Given (α,G , s) ∈ T× R+ × T, assume that the function

σ ∈ R 7−→ L(α,G , s − σ; εJ) ∈ R
has a non-degenerate critical point σ∗ = σ∗(α,G , s; εJ). Then, there exists
µ∗ = µ∗(G , εJ), such that for 0 < µ < µ∗, close to the point
z̃∗0 = (z0(σ∗, α,G ), s) ∈ γ̃ there exists a locally unique point

z̃∗ = z̃∗(σ∗, α,G , s; εJ, µ) ∈W s
µ(Λ̃∞) t W u

µ (Λ̃∞)

of the form z̃∗ = z̃∗0 + O(µ), and there exist unique points
x̃± = (0, α±, 0,G±, s) = (0, α, 0,G , s) + O(µ) ∈ Λ̃∞ such that

φ̃t,µ(z̃∗)− φ̃t,µ(x̃±) −→ 0 for t → ±∞.
Moreover, we have

G+ − G− = µ
∂L
∂α

(α,G , s − σ∗(α,G , s; εJ)) + O(µ2).
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The ERTBP (µ > 0) Reduced Poincaré function

Once we have found a critical point σ∗ = σ∗(α,G , s; εJ) of

σ ∈ R 7−→ L(α,G , s − σ; εJ) ∈ R

on a domain of (α,G , s), we can define the reduced Poincaré function
[D-Llave-Seara06]

L∗(α,G ; εJ) := L(α,G , s − σ∗; εJ) = L(α,G , s∗; εJ)

with s∗ = s − σ∗. Note that the reduced Poincaré function does not
depend on the s chosen, since by the previous Proposition

∂

∂s
(L (α,G , s − σ∗(α,G , s; εJ); εJ)) ≡ 0.

Note also that if the function σ ∈ R 7−→ L(α,G , s − σ; εJ) ∈ R has
different non degenerate critical points there will exist different scattering
maps.
The next Proposition gives an approximation of the scattering map in the
general case µ > 0.

Amadeu Delshams (UPC) Global instability and scattering maps Jan. 29-Feb. 2, 2018 97 / 118



The ERTBP (µ > 0) Scattering map

Proposition (Expression of the scattering map)

The associated scattering map (α+,G+, s+) = S̃µ(α,G , s) for any non
degenerate critical point σ∗ = σ∗(α,G , s; εJ) of the function
σ ∈ R 7−→ L(α,G , s − σ; εJ) ∈ R is an exact symplectic map given by

(α,G , s) 7−→
(
α−µ∂L

∗

∂G
(α,G ; εJ)+O(µ2),G+µ

∂L∗

∂α
(α,G ; εJ)+O(µ2), s

)
where L∗ is the Poincaré reduced function.

Remark: the scattering map S̃µ follows closely the level curves of the

Hamiltonians L∗. More precisely, up to O(µ2) terms, S̃µ is given by the
time −µ map of the Hamiltonian flow of Hamiltonian L∗. The O(µ2)
remainder will be negligible as long as

|µ| �
∣∣∣∣∂L∗∂G

∣∣∣∣ , ∣∣∣∣∂L∗∂α

∣∣∣∣ .
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The ERTBP (µ > 0) Computation of L(α,G , s; εJ)

L(α,G , s; εJ) =

∫ ∞
−∞

[
x2

h[
4 + x4

h r
2 + 4x2

h r cos(αh − f )
]1/2

+
(x2

h

2

)2
r cos(αh − f )−

x2
h

2

]
dt

where xh and αh, solutions on the separatrix, are evaluated at t, whereas r
and f , concerning the primaries, are evaluated at s + t.
Fourier expanding with respect to angular variables α, s, L is an even
function α, s: L(−α,G ,−s; εJ) = L(α,G , s; εJ), and therefore L has a
Fourier Cosine series with real coefficients Lq,k :

L = L0,0 + 2
∑
k≥1

L0,k cos kα + 2
∑
q≥1

∑
k∈Z

Lq,k cos(qs + kα).

Using the method of steepest descent along adequate complex paths, and
playing both with the eccentric and the true anomaly, it is possible to
compute these Fourier coefficients.
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The ERTBP (µ > 0) Computation of L(α,G , s; εJ)

Theorem (Computation of the Melnikov potential)

For G ≥ 32, εJG ≤ 1/8, the Melnikov potential is given by

L(α,G , s; εJ) = L0(α,G ; εJ) + L1(α,G , s; εJ) + L≥2(α,G , s; εJ)

with
L0(α,G ; εJ) = L0,0 + L0,1 cosα + E0(α,G ; εJ)

L1(α,G , s; εJ) = 2L1,−1 cos(s − α) + 2L1,−2 cos(s − 2α)

+ 2L1,−3 cos(s − 3α) + E1(α,G , s; εJ),

where Li ,j = Li ,j(G ; εJ) with L0,0 = π
2G3 (1 + E0,0) and

L0,1 = −15πεJ
8G 5

(1 + E0,1), 2 L1,−1 =

√
π

8G
e−G

3/3(1 + E1,−1)

2 L1,−2 = −3
√

2πεJG
3/2e−G

3/3(1 + E1,−2)

2 L1,−3 =
19

8

√
2πε2

JG
5/2e−G

3/3(1 + E1,−3).

Amadeu Delshams (UPC) Global instability and scattering maps Jan. 29-Feb. 2, 2018 100 / 118



The ERTBP (µ > 0) Computation of L(α,G , s; εJ)

Theorem (Continuation of the computation of the Melnikov potential)

The error functions satisfy

|E0,0| ≤ 212G−4 + 22 49 ε2
J

|E0,1| ≤ 213G−4 + ε2
J

|E1−1| ≤ 221G−1 + 2 49 ε2
J

|E1,−2| ≤ 217G−1 +
49

3
εJ

|E1,−3| ≤ 217G−1 + 15εJ

|E0| ≤ 214 ε2
JG
−7

|E1| ≤ 218εJe−G
3/3
[
ε2
JG

7/2 + G−3/2
]

|L≥2| ≤ 228G 3/2e−2G3/3
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The ERTBP (µ > 0) Critical points of L(α,G , ·; εJ)

s 7→ L(α,G , s; εJ) is indeed a cosine-like function, that is, with a
non-degenerate maximum (minimum) and no other critical points, so we
can find easily its critical points.

Proposition

There exists C > 32 and c < 1/8 such that, for G ≥ C and εJG < c,
s 7→ L(α,G , s; εJ) is a cosine-like function, and its two critical points are
given by

s∗+ = s∗+(α,G ; εJ) = α + θ + ϕ∗, s∗− = s∗− + π = α + θ + π + ϕ∗

where θ = θ(α,G ; εJ) and ϕ∗ = O
(
G 3/2e−G

3/3
)

.

By the previous Theorem, for G > C big enough and GεJ < c small
enough, the two critical points of L in the variable s are well approximated
by the two critical points of the function L0 + L1 (in fact of L1 because
L0 does not depend on s).
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The ERTBP (µ > 0) Two different scattering maps

We can define two different reduced Poincaré functions

L∗±(α,G ; εJ) = L(α,G , s∗±; εJ)

= L0(α,G ; εJ)± L∗1(α,G ; εJ) + E±(α,G ; εJ).

and two different scattering maps S̃±(α,G , s) = (S±(α,G , s), s), where

S±(α,G , s)=

(
α− µ

∂L∗±
∂G

(α,G ; εJ) + O(µ2),G + µ
∂L∗±
∂α

(α,G ; εJ) + O(µ2)

)
.

which follow closely the level curves of the Hamiltonians L∗±. More
precisely, up to O(µ2) terms, S± is given by the time −µ map of the
Hamiltonian flow of Hamiltonian L∗±. The O(µ2) remainder will be
negligible as long as

|µ| �
∣∣∣∣∂L∗±∂G

∣∣∣∣ , ∣∣∣∣∂L∗±∂α
∣∣∣∣ ,

which is true as long as 0 < µ� µ∗ = e−(c/εJ)3/3.
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The ERTBP (µ > 0) Two different scattering maps

One has to check that the foliations of L∗± = constant are different, since
this will imply that the scattering maps S± are different. From

{L∗+,L∗−} = {L0 + L∗1 + · · · ,L0 − L∗1 + · · · }
= −2{L0,L∗1}+ E3

one computes

{L0,L∗1} = −15πεJL∗1d sinα

8G 3B2
.

The level curves of L∗+ and L∗− are transversal in the region G ≥ C > 32
and εJG ≤ c < 1/8, except for the three curves α = 0, α = π and d = 0,
which are transversal to any of these level curves of L∗+ and L∗−, see next
slide.
Indeed, this is clear for the lines α = 0 and α = π, and the same happens
for the curve d = 0 using its complete expression.
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The ERTBP (µ > 0) Two different scattering maps

Figure: Illustration of the level Sets of L∗+ (L∗−) in Blue (Red) and d = 0 in Green
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The ERTBP (µ > 0) Strategy for diffusion

Apart from these three curves α = 0, π and d = 0, at any point in the
plane (α,G ) the slopes dG/dα of the level curves of L∗+ and L∗− are
different.

We can choose which level curve increases more the value of G (see
next slide).

In the same way, we can find trajectories along which the angular
momentum performs arbitrary excursions.

Strictly speaking, this mechanism only produces pseudo-orbits, that
is, heteroclinic connections between different periodic orbits in the
infinity manifold which are commonly known as transition chains after
Arnold.

The existence of true orbits relies on shadowing methods
[Moeckel02-07,Gidea-Llave06,Gidea-Llave-Seara14,
Guardia-Mart́ın-Seara-Sabbagh17] .
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The ERTBP (µ > 0) Strategy for diffusion

Figure: Zone of diffusion: Level curves of L∗+ (L∗−) in blue (red) and diffusion
trajectories in green.
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The ERTBP (µ > 0) Strategy for diffusion

Theorem (Main Result again)

Let G ∗1 < G ∗2 large enough and εJ > 0, µ > 0 small enough. More

precisely C ≤ G ∗1 < G ∗2 ≤ c/εJ and 0 < µ < µ∗ = c
C e−(8εJ)−3/3, for

C < 32 large enough and c < 1/8 small enough. Then, for any finite
sequence of values Gi ∈ (G ∗1 ,G

∗
2 ), i = 1, . . . , n, there exists a trajectory of

the RPETB such that G (Ti ) = Gi , i = 1, . . . , n for some 0 < Ti < Ti+1.
In particular, for any two values G1 < G2 ∈ (G ∗1 ,G

∗
2 ), there exists a

trajectory such that G (0) < G1, and G (T ) > G2 for some time T > 0.
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spatial RTBP close to L1

Arnold’s mechanism of diffusion in the spatial RTBP

Model:

The spatial circular restricted three-body problem: an infinitesimal
mass moves in space under the gravitational influence of two massive
bodies (primaries) describing circular orbits, without exerting any
influence on them
Focus on the dynamics near L1, the libration point between the
primaries – center×center×saddle

Results:
There exist trajectories that change the out-of-plane amplitude (w.r. to
the ecliptic) of an orbit near L1 by a ‘significant amount’, via the
Arnold mechanism of instability

abstract theorem – if certain conditions hold true then the existence of
drift trajectories follows
verification of conditions – some analytical, some numerical

Related works [Samà04,Terra,Simó,de Sousa Silva14]
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spatial RTBP close to L1

Introduction

Method:

There exists a normally hyperbolic invariant three-sphere
We construct orbits that alternatively follow segments of homoclinic
trajectories (outer dynamics) with segments of trajectories restricted to
the three-sphere (inner dynamics), thus mimicking Arnold’s instability
mechanism of transition tori1

However, we use only coarse information on the inner dynamics
(Poincaré recurrence theorem), no detailed information on the invariant
objects (KAM tori, Aubry-Mather sets, etc.)
We use a geometric method that allows for explicit construction of
drifting trajectories under milder conditions on the dynamics (compared
to variational methods)
This is a general strategy

1Our model is not a small perturbation of an integrable system
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spatial RTBP close to L1

Reference Problem: 3D Circular RTBP

The Restricted Three Body Problem (RTBP) defined as

Ẍ − 2Ẏ = ΩX ,

Ÿ + 2Ẋ = ΩY ,

Z̈ = ΩZ ,

where

Ω =
1

2
(X 2 + Y 2) +

1− µ
r1

+
µ

r2
+

1

2
µ(1− µ),

r2
1 = (X − µ)2 + Y 2 + Z 2,

r2
2 = (X − µ+ 1)2 + Y 2 + Z 2.
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spatial RTBP close to L1

Libration Points

X -coordinate of L1 is

X1 = −1 +
(µ

3

)1/3
− 1

3

(µ
3

)2/3
+ Oµ.

In the Sun-Earth system,
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spatial RTBP close to L1

Birkhoff Normal Form

On the center manifold, we obtain a two degrees of freedom Hamiltonian

Hc = HN

(
0,

x2
2 + y2

2

2
,
x2

3 + y2
3

2

)
.

Define the action-angle coordinates

Ip :=
x2

2 + y2
2

2
, φp

Iv :=
x2

3 + y2
3

2
, φv .

The equations of motion are integrable

İp = 0, φ̇p = ∂H
∂Ip

= ωp(Ip, Iv ) (18)

İv = 0, φ̇v = ∂H
∂Iv

= ωv (Ip, Iv ), (19)

and each solution lies on a 2-dimensional torus.
Each torus can be identified with the actions Ip, Iv .
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spatial RTBP close to L1

Family of Invariant Tori

Let us fix the energy level to H(0, Ip, Iv ) = h, with
H(L1) ≤ h ≤ H(halo).
Then we obtain a one-parameter family of invariant tori, parametrized
by the vertical action Iv . Iv=0.00

Iv=0.05
Iv=0.95
Iv=1.00
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Y
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0
0.001
0.002
0.003
0.004
0.005

Z

Figure: Low energy level C = 3.00088
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spatial RTBP close to L1

Family of Invariant Tori

Let us fix the energy level to H(0, Ip, Iv ) = h, with
H(L1) ≤ h ≤ H(halo).
Then we obtain a one-parameter family of invariant tori, parametrized
by the vertical action Iv . Iv=0.00

Iv=0.05
Iv=0.95
Iv=1.00

-0.992
-0.9915

-0.991
-0.9905

-0.99
-0.9895

-0.989
-0.9885

X -0.005
-0.004

-0.003
-0.002

-0.001
 0

 0.001
 0.002

 0.003
 0.004

 0.005

Y

-0.005

-0.004

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.005

Z

Figure: High energy level C = 3.00083
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spatial RTBP close to L1

Transition Matrix
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spatial RTBP close to L1

Transition Matrix
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Figure: High energy level C = 3.00083
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spatial RTBP close to L1

Main theoretical result (D-Gidea-Roldán 17)

Main Theorem. Given δ > 0.
Assume ∃ {LΣ

Ij
}j=0,N level sets of Iv , with 0 < Ij < Imax , and δj with

0 < δj < δ/2, s.t., for each j = 0, . . . ,N − 1:

(i) ∃ scattering map σΣ
i(j) and pt. (Ij , φj) ∈ LΣ

Ij
s.t.

Bδj (Ij , φj) ⊂ domσΣ
i(j),

(ii) ∃kj > 0 s.t. int[F kj ◦ σΣ
i(j)(Bδj (Ij , φj))] ⊇ Bδj+1

(Ij+1, φj+1)

Then ∃ an orbit zj of F in Σ, j = 0, . . . ,N, and a sequence of positive
integers nj > 0, j = 0, . . . ,N − 1, such that zj+1 = F nj (zj) and

d(zj ,LΣ
Ij

) < δ/2, for all j = 0, . . . ,N. (20)

Consequently, there exist a trajectory Φt(z) of the Hamiltonian flow, and a
finite sequence of times 0 = t0 < t1 < t2 < . . . < tN , such that

d(Φtj (z),LIj ) < δ. (21)
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spatial RTBP close to L1

Main theoretical result
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spatial RTBP Future work

Try to find drift orbits by constructing pseudo-orbits consisting of
successive applications of several scattering maps

Obtain theoretical results, using Hill locally and Kepler globally

Add time dependent perturbation—elliptic orbit of Jupiter—and
derive the existence of drift orbits
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